Mostrar el registro sencillo del ítem

dc.contributor.authorMarin-Quintero, J.
dc.contributor.authorOrozco-Henao, C.
dc.contributor.authorBretas, A.S.
dc.contributor.authorVelez, J.C.
dc.contributor.authorHerrada, A.
dc.contributor.authorBarranco-, Carlos A.
dc.contributor.authorPercybrooks, W.S.
dc.date.accessioned2023-07-19T12:56:17Z
dc.date.available2023-07-19T12:56:17Z
dc.date.issued2022
dc.date.submitted2023
dc.identifier.citationJ. Marín-Quintero et al., "Adaptive Fault Detection Based on Neural Networks and Multiple Sampling Points for Distribution Networks and Microgrids," in Journal of Modern Power Systems and Clean Energy, vol. 10, no. 6, pp. 1648-1657, November 2022, doi: 10.35833/MPCE.2021.000444.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12159
dc.description.abstractSmart networks such as active distribution network (ADN) and microgrid (MG) play an important role in power system operation. The design and implementation of appropriate protection systems for MG and ADN must be addressed, which imposes new technical challenges. This paper presents the implementation and validation aspects of an adaptive fault detection strategy based on neural networks (NNs) and multiple sampling points for ADN and MG. The solution is implemented on an edge device. NNs are used to derive a data-driven model that uses only local measurements to detect fault states of the network without the need for communication infrastructure. Multiple sampling points are used to derive a data-driven model, which allows the generalization considering the implementation in physical systems. The adaptive fault detector model is implemented on a Jetson Nano system, which is a single-board computer (SBC) with a small graphic processing unit (GPU) intended to run machine learning loads at the edge. The proposed method is tested in a physical, real-life, low-voltage network located at Universidad del Norte, Colombia. This testing network is based on the IEEE 13-node test feeder scaled down to 220 V. The validation in a simulation environment shows the accuracy and dependability above 99.6%, while the real-time tests show the accuracy and dependability of 95.5% and 100%, respectively. Without hard-to-derive parameters, the easy-to-implement embedded model highlights the potential for real-life applications. © 2013 State Grid Electric Power Research Institute.spa
dc.format.extent9 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Modern Power Systems and Clean Energyspa
dc.titleAdaptive Fault Detection Based on Neural Networks and Multiple Sampling Points for Distribution Networks and Microgridsspa
dcterms.bibliographicCitationChoi, M.-G., Ahn, S.-J., Choi, J.-H., Cho, S.-M., Yun, S.-Y. Adaptive Protection Method of Distribution Networks Using the Sensitivity Analysis for Changed Network Topologies Based on Base Network Topology (2020) IEEE Access, 8, art. no. 9163368, pp. 148169-148180. Cited 11 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2020.3015517spa
dcterms.bibliographicCitationChowdhury, S., Chowdhury, S.P., Crossley, P. Microgrids and active distribution networks (2009) Microgrids and Active Distribution Networks, pp. 1-298. Cited 584 times. http://dx.doi.org/10.1049/PBRN006E ISBN: 978-184919102-9; 978-184919014-5spa
dcterms.bibliographicCitationHatziargyriou, N. Microgrids: Architectures and Control (2013) Microgrids: Architectures and Control, pp. 1-317. Cited 550 times. http://onlinelibrary.wiley.com/book/10.1002/9781118720677 ISBN: 978-111872067-7; 978-111872068-4 doi: 10.1002/9781118720677spa
dcterms.bibliographicCitationMariam, L., Basu, M., Conlon, M.F. Microgrid: Architecture, policy and future trends (2016) Renewable and Sustainable Energy Reviews, 64, pp. 477-489. Cited 169 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2016.06.037spa
dcterms.bibliographicCitationMonti, A., Milano, F., Bompard, E., Guillaud, X. Converter-Based Dynamics and Control of Modern Power Systems (2020) Converter-Based Dynamics and Control of Modern Power Systems, pp. 1-361. Cited 8 times. https://www.elsevier.com/books/converter-based-dynamics-and-control-of-modern-power-systems/monti/978-0-12-818491-2 ISBN: 978-012818491-2 doi: 10.1016/B978-0-12-818491-2.09991-0spa
dcterms.bibliographicCitationGopalan, S.A., Sreeram, V., Iu, H.H.C. A review of coordination strategies and protection schemes for microgrids (2014) Renewable and Sustainable Energy Reviews, 32, pp. 222-228. Cited 119 times. doi: 10.1016/j.rser.2014.01.037spa
dcterms.bibliographicCitationUstun, T.S., Ozansoy, C., Zayegh, A. Modeling of a centralized microgrid protection system and distributed energy resources according to IEC 61850-7-420 (2012) IEEE Transactions on Power Systems, 27 (3), art. no. 6153416, pp. 1560-1567. Cited 263 times. doi: 10.1109/TPWRS.2012.2185072spa
dcterms.bibliographicCitationMemon, A.A., Kauhaniemi, K. An adaptive protection for radial AC microgrid using IEC 61850 communication standard: Algorithm proposal using offline simulations (2020) Energies, 13 (20), art. no. 5316. Cited 16 times. https://www.mdpi.com/1996-1073/13/20/5316 doi: 10.3390/en13205316spa
dcterms.bibliographicCitationSenarathna, T.S.S., Udayanga Hemapala, K.T.M. Review of adaptive protection methods for microgrids (Open Access) (2019) AIMS Energy, 7 (5), pp. 557-578. Cited 25 times. https://www.aimspress.com/fileOther/PDF/energy/energy-07-05-557.pdf doi: 10.3934/energy.2019.5.557spa
dcterms.bibliographicCitationMahat, P., Chen, Z., Bak-Jensen, B., Bak, C.L. A simple adaptive overcurrent protection of distribution systems with distributed generation (2011) IEEE Transactions on Smart Grid, 2 (3), art. no. 5871328, pp. 428-437. Cited 380 times. doi: 10.1109/TSG.2011.2149550spa
dcterms.bibliographicCitationYu, J.J.Q., Hou, Y., Lam, A.Y.S., Li, V.O.K. Intelligent fault detection scheme for microgrids with wavelet-based deep neural networks (2019) IEEE Transactions on Smart Grid, 10 (2), art. no. 8118194, pp. 1694-1703. Cited 218 times. doi: 10.1109/TSG.2017.2776310spa
dcterms.bibliographicCitationFahim, S.R., Sarker, S.K., Muyeen, S.M., Das, S.K., Kamwa, I. A deep learning based intelligent approach in detection and classification of transmission line faults (2021) International Journal of Electrical Power and Energy Systems, 133, art. no. 107102. Cited 38 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2021.107102spa
dcterms.bibliographicCitationDraz, A., Elkholy, M.M., El-Fergany, A.A. Soft Computing Methods for Attaining the Protective Device Coordination Including Renewable Energies: Review and Prospective (2021) Archives of Computational Methods in Engineering, 28 (7), pp. 4383-4404. Cited 10 times. http://www.springerlink.com/content/1134-3060 doi: 10.1007/s11831-021-09534-5spa
dcterms.bibliographicCitationMarín-Quintero, J., Orozco-Henao, C., Percybrooks, W.S., Vélez, J.C., Montoya, O.D., Gil-González, W. Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector (2021) Applied Soft Computing, 98, art. no. 106839. Cited 13 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2020.106839spa
dcterms.bibliographicCitationMarín-Quintero, J., Orozco-Henao, C., Velez, J.C., Bretas, A.S. Micro grids decentralized hybrid data-driven cuckoo search based adaptive protection model (2021) International Journal of Electrical Power and Energy Systems, 130, art. no. 106960. Cited 11 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2021.106960spa
dcterms.bibliographicCitationCepeda, C., Orozco-Henao, C., Percybrooks, W., Pulgarín-Rivera, J.D., Montoya, O.D., Gil-González, W., Vélez, J.C. Intelligent fault detection system for microgrids (2020) Energies, 13 (5), art. no. 1223. Cited 27 times. https://www.mdpi.com/1996-1073/13/5/1223 doi: 10.3390/en13051223spa
dcterms.bibliographicCitationKar, S., Samantaray, S.R., Zadeh, M.D. Data-Mining Model Based Intelligent Differential Microgrid Protection Scheme (2017) IEEE Systems Journal, 11 (2), pp. 1161-1169. Cited 186 times. http://www.ieee.org/products/onlinepubs/news/0806_01.html doi: 10.1109/JSYST.2014.2380432spa
dcterms.bibliographicCitationSaleh, K., Ayad, A. Fault zone identification and phase selection for microgrids using decision trees ensemble (2021) International Journal of Electrical Power and Energy Systems, 132, art. no. 107178. Cited 9 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2021.107178spa
dcterms.bibliographicCitationMishra, D.P., Samantaray, S.R., Joos, G. A combined wavelet and data-mining based intelligent protection scheme for microgrid (2016) IEEE Transactions on Smart Grid, 7 (5), art. no. 7307183, pp. 2295-2304. Cited 259 times. doi: 10.1109/TSG.2015.2487501spa
dcterms.bibliographicCitationPatnaik, B., Mishra, M., Bansal, R.C., Jena, R.K. MODWT-XGBoost based smart energy solution for fault detection and classification in a smart microgrid (Open Access) (2021) Applied Energy, 285, art. no. 116457. Cited 39 times. https://www.journals.elsevier.com/applied-energy doi: 10.1016/j.apenergy.2021.116457spa
dcterms.bibliographicCitationNaitMalek, Y., Najib, M., Bakhouya, M., Essaaidi, M. Embedded Real-time Battery State-of-Charge Forecasting in Micro-Grid Systems (Open Access) (2021) Ecological Complexity, 45, art. no. 100903. Cited 5 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/701873/description#description doi: 10.1016/j.ecocom.2020.100903spa
dcterms.bibliographicCitationPrincipi, E., Rossetti, D., Squartini, S., Piazza, F. Unsupervised electric motor fault detection by using deep autoencoders (Open Access) (2019) IEEE/CAA Journal of Automatica Sinica, 6 (2), art. no. 8651897, pp. 441-451. Cited 114 times. https://www.ieee.org/membership-catalog/productdetail/showProductDetailPage.html?product=PER284-EPC doi: 10.1109/JAS.2019.1911393spa
dcterms.bibliographicCitationLi, H., Hu, G., Li, J., Zhou, M. Intelligent Fault Diagnosis for Large-Scale Rotating Machines Using Binarized Deep Neural Networks and Random Forests (2022) IEEE Transactions on Automation Science and Engineering, 19 (2), pp. 1109-1119. Cited 27 times. http://www.ieee.org/t-ase doi: 10.1109/TASE.2020.3048056spa
dcterms.bibliographicCitationCoffele, F., Booth, C., Dyśko, A., Burt, G. Quantitative analysis of network protection blinding for systems incorporating distributed generation (Open Access) (2012) IET Generation, Transmission and Distribution, 6 (12), pp. 1218-1224. Cited 34 times. doi: 10.1049/iet-gtd.2012.0381spa
dcterms.bibliographicCitationHosseini, S.A., Abyaneh, H.A., Sadeghi, S.H.H., Razavi, F., Nasiri, A. An overview of microgrid protection methods and the factors involved (2016) Renewable and Sustainable Energy Reviews, 64, pp. 174-186. Cited 133 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2016.05.089spa
dcterms.bibliographicCitationZheng, K.-H., Xia, M.-C. Impacts of microgrid on protection of distribution networks and protection strategy of microgrid (2011) APAP 2011 - Proceedings: 2011 International Conference on Advanced Power System Automation and Protection, 1, art. no. 6180426, pp. 356-359. Cited 19 times. ISBN: 978-142449619-8 doi: 10.1109/APAP.2011.6180426spa
dcterms.bibliographicCitationMumtaz, F., Bayram, I.S. Planning, Operation, and Protection of Microgrids: An Overview (2017) Energy Procedia, 107, pp. 94-100. Cited 58 times. http://www.sciencedirect.com/science/journal/18766102 doi: 10.1016/j.egypro.2016.12.137spa
dcterms.bibliographicCitationZhai, H.F., Yang, M., Chen, B., Kang, N. Dynamic reconfiguration of three-phase unbalanced distribution networks (2018) International Journal of Electrical Power and Energy Systems, 99, pp. 1-10. Cited 68 times. doi: 10.1016/j.ijepes.2017.12.027spa
dcterms.bibliographicCitationBhattacharya, S.K., Goswami, S.K. Distribution network reconfiguration considering protection coordination constraints (2008) Electric Power Components and Systems, 36 (11), pp. 1150-1165. Cited 20 times. doi: 10.1080/15325000802084463spa
dcterms.bibliographicCitationAminifar, F., Teimourzadeh, S., Shahsavari, A., Savaghebi, M., Golsorkhi, M.S. Machine learning for protection of distribution networks and power electronics-interfaced systems (2021) Electricity Journal, 34 (1), art. no. 106886. Cited 14 times. http://www.electricity-online.com doi: 10.1016/j.tej.2020.106886spa
dcterms.bibliographicCitationKhalid, H., Shobole, A. Existing Developments in Adaptive Smart Grid Protection: A Review (2021) Electric Power Systems Research, 191, art. no. 106901. Cited 24 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2020.106901spa
dcterms.bibliographicCitationAlonso, M., Amaris, H., Alcala, D., Florez, D.M.R. Smart sensors for smart grid reliability (2020) Sensors (Switzerland), 20 (8), art. no. 2187. Cited 25 times. https://www.mdpi.com/1424-8220/20/8/2187/pdf doi: 10.3390/s20082187spa
dcterms.bibliographicCitationShahin, M.A., Maier, H.R., Jaksa, M.B. Data division for developing neural networks applied to geotechnical engineering (Open Access) (2004) Journal of Computing in Civil Engineering, 18 (2), pp. 105-114. Cited 289 times. doi: 10.1061/(ASCE)0887-3801(2004)18:2(105)spa
dcterms.bibliographicCitationBishop, C.M. (2006) Pattern Recognition and Machine Learning. Cited 33833 times. New York: Springerspa
dcterms.bibliographicCitationOrozco-Henao, C., Marin-Quintero, J., Castillo-Sierra, R., Velez, J.C., Oliveros, I., Pardo, M. Active Distribution Networks Laboratory: A Case of Experiments in Power Quality (2019) 2019 IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019 - Proceedings, art. no. 8851535. Cited 2 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8844570 ISBN: 978-172811626-6 doi: 10.1109/PEPQA.2019.8851535spa
dcterms.bibliographicCitationKersting, W.H. Distribution system modeling and analysis: Fourth edition (Open Access) (2017) Distribution System Modeling and Analysis: Fourth Edition, pp. 1-526. Cited 819 times. http://www.tandfebooks.com/doi/book/10.1201/9781315120782 ISBN: 978-149877214-3; 978-149877213-6 doi: 10.1201/9781315120782spa
dcterms.bibliographicCitationPérez-Londoño, Garcés, S., Bueno-López, A. (2020) Components modelling in AC microgrids. Cited 4 times. Jan. https://doi.org/https://doi.org/10.22517/97895spa
dcterms.bibliographicCitation(2013) User Manual Powerfactory v15.0. Cited 2 times. DIgSILENT GmbH, Germanyspa
dcterms.bibliographicCitationCastro, L., López, M.F.B., Ocampo, M.Á.R. (2021) Control jerárquico en micro-redes AC Jun. https://hdl.handle.net/11059/13701spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.35833/MPCE.2021.000444
dc.subject.keywordsOvercurrent Protection;spa
dc.subject.keywordsMicrogrid;spa
dc.subject.keywordsFault Current Limitersspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.