Mostrar el registro sencillo del ítem

dc.contributor.authorGil-González, Walter
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorEspinosa-Perez, Gerardo
dc.date.accessioned2023-07-19T12:55:58Z
dc.date.available2023-07-19T12:55:58Z
dc.date.issued2021
dc.date.submitted2023
dc.identifier.citationGil-González, W., Montoya, O. D., & Espinosa-Perez, G. (2021). Adaptive control for second-order DC–DC converters: PBC approach. En A. Garcés (Ed.), Modeling, Operation, and Analysis of DC Grids (pp. 289–310). Elsevier.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12158
dc.description.abstractThis chapter deals with the design of a passivity-based controller for DC-DC converters by using a general representation for second-order converters, that is, buck, boost, buck-boost, and noninverting buck-boost converters. The main idea is to propose a dynamic structure for representing these converters by introducing some constants that allow compressing them into a unique representation. The general model obtained for these converters is a bilinear port-controlled Hamiltonian (PCH) representation, whose control input is multiplied by some state variables. This PCH structure allows designing a general proportional-integral controller with passive output that ensures the asymptotic stability for closed-loop operation in the Lyapunov sense. Numerical results demonstrate that the general proposed control scheme allows regulating the voltage output of all the converters with minimum errors and adequate responses during step changes in the reference signal. © 2021 Elsevier Inc. All rights reserved.spa
dc.format.extent21 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceModeling, Operation, and Analysis of DC Grids: From High Power DC Transmission to DC Microgridsspa
dc.titleAdaptive control for second-order DC-DC converters: PBC approachspa
dcterms.bibliographicCitationLund, P.D., Byrne, J., Haas, R., Flynn, D. (2019) Advances in Energy Systems: The Large-Scale Renewable Energy Integration Challenge. Cited 18 times. John Wiley and Sonsspa
dcterms.bibliographicCitationPatterson, B.T. DC, Come Home: DC Microgrids and the Birth of the "Enernet" (2012) IEEE Power and Energy Magazine, 10 (6), art. no. 6331777, pp. 60-69. Cited 213 times. doi: 10.1109/MPE.2012.2212610spa
dcterms.bibliographicCitationZia, M.F., Elbouchikhi, E., Benbouzid, M. Optimal operational planning of scalable DC microgrid with demand response, islanding, and battery degradation cost considerations (2019) Applied Energy, 237, pp. 695-707. Cited 99 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2019.01.040spa
dcterms.bibliographicCitationAyad, M.Y., Becherif, M., Henni, A., Aboubou, A., Wack, M., Laghrouche, S. Passivity-Based Control applied to DC hybrid power source using fuel cell and supercapacitors (2010) Energy Conversion and Management, 51 (7), pp. 1468-1475. Cited 73 times. doi: 10.1016/j.enconman.2010.01.023spa
dcterms.bibliographicCitationYang, B., Zhu, T., Zhang, X., Wang, J., Shu, H., Li, S., He, T., (...), Yu, T. Design and implementation of Battery/SMES hybrid energy storage systems used in electric vehicles: A nonlinear robust fractional-order control approach (2020) Energy, 191, art. no. 116510. Cited 54 times. https://www.journals.elsevier.com/energy doi: 10.1016/j.energy.2019.116510spa
dcterms.bibliographicCitationGil-Gonzalez, W., Garces, A., Montoya, O.D. Current PI Control for PV Systems in DC Microgrids: A PBC Design (2019) 2019 IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019 - Proceedings, art. no. 8851555. Cited 2 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8844570 ISBN: 978-172811626-6 doi: 10.1109/PEPQA.2019.8851555spa
dcterms.bibliographicCitationJovcic, D., Zhang, L. LCL DC/DC converter for DC grids (2013) IEEE Transactions on Power Delivery, 28 (4), art. no. 6596520, pp. 2071-2079. Cited 125 times. doi: 10.1109/TPWRD.2013.2272834spa
dcterms.bibliographicCitationJin, C., Wang, P., Xiao, J., Tang, Y., Choo, F.H. Implementation of hierarchical control in DC microgrids (2014) IEEE Transactions on Industrial Electronics, 61 (8), art. no. 6642055, pp. 4032-4042. Cited 295 times. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5410131 doi: 10.1109/TIE.2013.2286563spa
dcterms.bibliographicCitationDragicevic, T., Lu, X., Vasquez, J.C., Guerrero, J.M. DC Microgrids - Part I: A Review of Control Strategies and Stabilization Techniques (2016) IEEE Transactions on Power Electronics, 31 (7), art. no. 7268934, pp. 4876-4891. Cited 1100 times. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4712525 doi: 10.1109/TPEL.2015.2478859spa
dcterms.bibliographicCitationGarcés, A. Convex optimization for the optimal power flow on DC distribution systems (2020) Handbook of Optimization in Electric Power Distribution Systems, pp. 121-137. Cited 7 times. Springerspa
dcterms.bibliographicCitationMontoya, O.D., Garcés, A., Ortega, I., Espinosa, G.R. Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter (2018) 2018 IEEE Green Technologies Conference (GreenTech), pp. 89-94. Cited 3 times.spa
dcterms.bibliographicCitationOrtiz Valencia, P.A., Ramos-Paja, C.A. Sliding-mode controller for maximum power point tracking in grid-connected photovoltaic systems (2015) Energies, 8 (11), pp. 12363-12387. Cited 10 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en81112318spa
dcterms.bibliographicCitationKim, S.-K. Passivity-based robust output voltage tracking control of DC/DC boost converter for wind power systems (2018) Energies, 11 (6), art. no. 1469, p. 121693718. Cited 6 times. http://www.mdpi.com/1996-1073/11/6/1469/pdf doi: 10.3390/en11061469spa
dcterms.bibliographicCitationGil-Gonzalez, W.J., Montoya, O.D., Garces, A., Serra, F.M., Magaldi, G. Output Voltage Regulation for DC-DC Buck Converters: A Passivity-Based PI Design (2019) 2019 IEEE 10th Latin American Symposium on Circuits and Systems, LASCAS 2019 - Proceedings, art. no. 8667557, pp. 189-192. Cited 8 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8666669 ISBN: 978-172810452-2 doi: 10.1109/LASCAS.2019.8667557spa
dcterms.bibliographicCitationMontoya, O.D., Gil-Gonzalez, W., Serra, F.M., Magaldi, G. PBC approach applied on a DC-DC step-down converter for providing service to CPLs (2019) 4th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019 - Proceedings, art. no. 8920944. Cited 3 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8910520 ISBN: 978-153866962-4 doi: 10.1109/CCAC.2019.8920944spa
dcterms.bibliographicCitationMontoya, O.D., Villa, J.L., Gil-Gonzale, W. PBC design for voltage regulation in buck converters with parametric uncertainties (2019) 4th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019 - Proceedings, art. no. 8921015. Cited 3 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8910520 ISBN: 978-153866962-4 doi: 10.1109/CCAC.2019.8921015spa
dcterms.bibliographicCitationChen, Z., Hu, J., Gao, W. Closed-loop analysis and control of a non-inverting buck-boost converter (Open Access) (2010) International Journal of Control, 83 (11), pp. 2294-2307. Cited 15 times. doi: 10.1080/00207179.2010.520030spa
dcterms.bibliographicCitationSiraramirez, H. Design of p-i controllers for dc-to-dc power supplies via extended linearization (1990) International Journal of Control, 51 (3), pp. 601-620. Cited 25 times. doi: 10.1080/00207179008934087spa
dcterms.bibliographicCitationSundareswaran, K., Devi, V., Nadeem, S.K., Sreedevi, V.T., Palani, S. Buck-boost converter feedback controller design via evolutionary search (2010) International Journal of Electronics, 97 (11), pp. 1317-1327. Cited 11 times. doi: 10.1080/00207217.2010.488904spa
dcterms.bibliographicCitationŞahin, M.E., Okumuş, H.İ. Comparison of Different Controllers and Stability Analysis for Photovoltaic Powered Buck-Boost DC-DC Converter (2018) Electric Power Components and Systems, 46 (2), pp. 149-161. Cited 18 times. www.tandf.co.uk/journals/titles/15325008.asp doi: 10.1080/15325008.2018.1436617spa
dcterms.bibliographicCitationKurokawa, F., Ueno, K., Maruta, H., Osuga, H. A new control method for DC-DC converter by neural network predictor with repetitive training (2011) Proceedings - 10th International Conference on Machine Learning and Applications, ICMLA 2011, 2, art. no. 6147690, pp. 292-297. Cited 12 times. ISBN: 978-076954607-0 doi: 10.1109/ICMLA.2011.17spa
dcterms.bibliographicCitationSoriano-Sánchez, A.G., Rodríguez-Licea, M.A., Pérez-Pinal, F.J., Vázquez-López, J.A. Fractional-order approximation and synthesis of a PID controller for a buck converter (2020) Energies, 13 (3), art. no. 629. Cited 16 times. https://www.mdpi.com/1996-1073/13/3 doi: 10.3390/en13030629spa
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garces, A. Distributed energy resources integration in single-phase microgrids: An application of IDA-PBC and PI-PBC approaches (Open Access) (2019) International Journal of Electrical Power and Energy Systems, 112, pp. 221-231. Cited 21 times. doi: 10.1016/j.ijepes.2019.04.046spa
dcterms.bibliographicCitationSira-Ramirez, H.J., Silva-Ortigoza, R. (2006) Control Design Techniques in Power Electronics Devices. Cited 453 times. Springer Science and Business Mediaspa
dcterms.bibliographicCitationOrtega, R., Perez, J.A.L., Nicklasson, P.J., Sira-Ramirez, H.J. (2013) Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications. Cited 1776 times. Springer Science and Business Mediaspa
dcterms.bibliographicCitationVan der Schaft, A.J., Van Der Schaft, A. (2017) L2-Gain and Passivity Techniques in Nonlinear Control, vol. 3. Cited 2587 times. Springerspa
dcterms.bibliographicCitationCisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M. Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters (2015) Control Engineering Practice, 43, pp. 109-119. Cited 65 times. www.elsevier.com/inca/publications/store/1/2/3/ doi: 10.1016/j.conengprac.2015.07.002spa
dcterms.bibliographicCitationLinares Flores, J., Barahona Avalos, J.L., Bautista Espinosa, C.A. Passivity-based controller and online algebraic estimation of the load parameter of the DC-to-DC power converter Ćuk type (2011) IEEE Latin America Transactions, 9 (1), art. no. 5876420, pp. 50-57. Cited 24 times. doi: 10.1109/TLA.2011.5876420spa
dcterms.bibliographicCitationHernandez-Gomez, M., Ortega, R., Lamnabhi-Lagarrigue, F., Escobar, G. Adaptive PI stabilization of switched power converters (Open Access) (2010) IEEE Transactions on Control Systems Technology, 18 (3), art. no. 5175285, pp. 688-698. Cited 119 times. doi: 10.1109/TCST.2009.2023669spa
dcterms.bibliographicCitationAstolfi, A., Karagiannis, D., Ortega, R. (2007) Nonlinear and Adaptive Control with Applications. Cited 619 times. Springer Science and Business Mediaspa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1016/B978-0-12-822101-3.00016-2
dc.subject.keywordsBuck Converter;spa
dc.subject.keywordsSliding Mode Control;spa
dc.subject.keywordsControllerspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.