Mostrar el registro sencillo del ítem

dc.contributor.authorDomínguez, J.A
dc.contributor.authorParrado-Duque, A.
dc.contributor.authorMontoya, O.D
dc.contributor.authorHenao, N.
dc.contributor.authorCampillo, J.
dc.contributor.authorAgbossou, K
dc.date.accessioned2023-07-18T19:36:31Z
dc.date.available2023-07-18T19:36:31Z
dc.date.issued2023-02
dc.date.submitted2023-07
dc.identifier.citationJ. A. Domínguez, A. Parrado-Duque, O. D. Montoya, N. Henao, J. Campillo and K. Agbossou, "Techno-economic Feasibility of A Trust and Grid-aware Coordination Scheme," 2023 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 2023, pp. 1-5, doi: 10.1109/TPEC56611.2023.10078675.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12153
dc.description.abstractThe massive penetration of active customers throughout Home Energy Management Systems (HEMS) may cause adverse effects on the power grid, including rebound peaks, instabilities, and power congestion. The concept of coordination has arisen in literature to mitigate these effects and relieve power grid stress. Their advantages have been discussed for different market types as well as at different grid scales. However, it is imperative to develop proofs-of-concept and test not only the economic feasibility of such programs but also the technical one. This paper presents a cosimulation-based framework that facilitates economic and technical studies for coordination programs. A case study is presented, with eighteen residential users and a local coordinator within a Stackelberg game. At the customer level, flexibility is achieved through electric thermal storage (ETS). The program exploits salient features of blockchain algorithms to increase security at the demand aggregation level. The technical feasibility was evaluated through the Peak-to-average (PAR) ratio, active power losses, and the voltage profile using power flow methods over the IEEE 33-node feeder. This study’s findings demonstrate the coordination programs’ ability to bring economic benefits and reduce the PAR. Furthermore, they suggest that although coordination programs can assist in flattening the power profile, they could create adverse effects on the power grid in critical scenarios.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.source2023 IEEE Texas Power and Energy Conference, TPEC 2023spa
dc.titleTechno-economic Feasibility of A Trust and Grid-aware Coordination Schemespa
dcterms.bibliographicCitationCaballero-Peña, J., Cadena-Zarate, C., Parrado-Duque, A., Osma-Pinto, G. Distributed energy resources on distribution networks: A systematic review of modelling, simulation, metrics, and impacts (2022) International Journal of Electrical Power and Energy Systems, 138, art. no. 107900. Cited 16 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2021.107900spa
dcterms.bibliographicCitationDominguez, J.A., Dante, A.W., Agbossou, K., Henao, N., Campillo, J., Cardenas, A., Kelouwani, S. Optimal Charging Scheduling of Electric Vehicles based on Principal Component Analysis and Convex Optimization (2020) IEEE International Symposium on Industrial Electronics, 2020-June, art. no. 9152292, pp. 935-940. Cited 4 times. ISBN: 978-172815635-4 doi: 10.1109/ISIE45063.2020.9152292spa
dcterms.bibliographicCitationEtedadi Aliabadi, F., Agbossou, K., Kelouwani, S., Henao, N., Hosseini, S.S. Coordination of smart home energy management systems in neighborhood areas: A systematic review (2021) IEEE Access, 9, art. no. 9363112, pp. 36417-36443. Cited 30 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2021.3061995spa
dcterms.bibliographicCitationLazaroiu, C., Roscia, M., Saatmandi, S. Blockchain strategies and policies for sustainable electric mobility into Smart City (2020) 2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2020, art. no. 9161832, pp. 363-368. Cited 7 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9154348 ISBN: 978-172817019-0 doi: 10.1109/SPEEDAM48782.2020.9161832spa
dcterms.bibliographicCitationMoghbel, M., Masoum, M.A.S., Fereidouni, A. Decentralize Coordinated Charging of Plug-In Electric Vehicles in Unbalanced Residential Networks to Control Distribution Transformer Loading, Voltage Profile and Current Unbalance (2015) Intelligent Industrial Systems, 1 (2), pp. 141-151. Cited 12 times. Aug https://doi.org/10.1007/s40903-015-0008-7spa
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems (2020) Electric Power Systems Research, 187, art. no. 106454. Cited 39 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2020.106454spa
dcterms.bibliographicCitationFraija, A., Agbossou, K., Henao, N., Kelouwani, S. Peak-to-Average Ratio Analysis of A Load Aggregator for Incentive-based Demand Response (2020) IEEE International Symposium on Industrial Electronics, 2020-June, art. no. 9152474, pp. 953-958. Cited 10 times. ISBN: 978-172815635-4 doi: 10.1109/ISIE45063.2020.9152474spa
dcterms.bibliographicCitationBokkisam, H.R., Singh, S., Acharya, R.M., Selvan, M.P. Blockchain-based peer-to-peer transactive energy system for community microgrid with demand response management (Open Access) (2022) CSEE Journal of Power and Energy Systems, 8 (1), pp. 198-211. Cited 28 times. https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7054730 doi: 10.17775/CSEEJPES.2020.06660spa
dcterms.bibliographicCitationBragagnolo, S.N., Vaschetti, J.C., Magnago, F. A technical and economic criteria comparison on demand side management with multi-level optimization model (2021) IEEE Latin America Transactions, 19 (9), art. no. 9468442, pp. 1494-1501. Cited 4 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9907 doi: 10.1109/TLA.2021.9468442spa
dcterms.bibliographicCitationNizami, S., Tushar, W., Hossain, M.J., Yuen, C., Saha, T., Poor, H.V. Transactive energy for low voltage residential networks: A review (2022) Applied Energy, 323, art. no. 119556. Cited 7 times. https://www.journals.elsevier.com/applied-energy doi: 10.1016/j.apenergy.2022.119556spa
dcterms.bibliographicCitationDominguez, J.A., Rueda, L., Henao, N., Agbossou, K., Campillo, J. Distributed Co-simulation for Smart Homes Energy Management in the Presence of Electrical Thermal Storage (2022) IECON Proceedings (Industrial Electronics Conference), 2022-October. Cited 2 times. ISBN: 978-166548025-3 doi: 10.1109/IECON49645.2022.9969092spa
dcterms.bibliographicCitationAriza, H., Martinez-Santos, J.C., Payares, E.D., Medina, M.F., Dominguez-Jimenez, J.A., Campillo, J. A blockchain solution for operational parameters monitoring platform for DC microgrids (Open Access) (2020) 2020 IEEE ANDESCON, ANDESCON 2020, art. no. 9272035. Cited 4 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9271969 ISBN: 978-172819365-6 doi: 10.1109/ANDESCON50619.2020.9272035spa
dcterms.bibliographicCitationCampillo, J., Dominguez-Jimenez, J.A., Ariza, H., Payares, E.D., Martinez-Santos, J.C. Distributed Energy Resources Parameter Monitoring in Microgrids Using Blockchain and Edge Computing (2020) 2020 IEEE PES Transactive Energy Systems Conference, TESC 2020 http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9656870 ISBN: 978-166542935-1 doi: 10.1109/TESC50295.2020.9656872spa
dcterms.bibliographicCitationParikh, N., Boyd, S. Proximal Algorithms (2014) Foundations and TrendsR in Optimization, 1 (3), pp. 127-239. Cited 2674 times. http://www.nowpublishers.com/articles/foundationsand-trends-in-optimization/OPT-003spa
dcterms.bibliographicCitationNguyen, T.L., Tran, Q.-T., Caire, R., Gavriluta, C., Nguyen, V.H. Agent based distributed control of islanded microgrid-Real-time cyber-physical implementation (Open Access) (2017) 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT-Europe 2017 - Proceedings, 2018-January, pp. 1-6. Cited 19 times. ISBN: 978-153861953-7 doi: 10.1109/ISGTEurope.2017.8260275spa
dcterms.bibliographicCitation(2018) IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. Cited 1334 times. Institute of Electrical and Electronics Engineers-IEEE. New York: The Institute of Electrical and Electronics Engineers, Inc Februaryspa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1109/TPEC56611.2023.10078675
dc.subject.keywordsBlockchainspa
dc.subject.keywordsDemand Responsespa
dc.subject.keywordsDistributed Energy Managementspa
dc.subject.keywordsElectric Thermal Storagespa
dc.subject.keywordsPower Flowspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.