Mostrar el registro sencillo del ítem

dc.contributor.authorBarreto, D.
dc.contributor.authorFajardo, J
dc.contributor.authorCampillo, J.
dc.date.accessioned2023-07-18T19:36:12Z
dc.date.available2023-07-18T19:36:12Z
dc.date.issued2019
dc.date.submitted2023
dc.identifier.citationBarreto, D., Fajardo, J., & Campillo, J. (2019, November). Determination of the Optimal Range of the Compressor Inlet Air Temperature in a Power Plant With Stig Cycle Through of Advanced Exergetic Analysis. In ASME International Mechanical Engineering Congress and Exposition (Vol. 59438, p. V006T06A070). American Society of Mechanical Engineers.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12151
dc.description.abstractConventional exergy analysis identifies the more inefficient components; however, this doesn’t regard interaction between components, neither real improvement potential to each component of the system, this information is providing for the advanced exergy analysis. In this paper was developed an advanced exergy analysis to determine the optimal range of the compressor inlet air temperature, to compensate the power loss in a power plant with Stig cycle and an air cooling system. This plant without cooling system at ISO conditions produce 52 MW, while in local conditions (32 °C, 80%RH) its productions decreases to 44.3MW. The results showed that for every degree centigrade that the air temperature decreases at inlet compressor the power output increases in 0.17 MW and total destroyed exergy increases 0.23 MW. It was determined that for the optimal range of compressor inlet air temperature is between 10 and 12°C; at this range were obtained the highest power output values, and the values of the avoidable and endogenous exergy destroyed are diminished in 0.28 MW and 0.20 MW respectively compared to those given in local operating conditions. Copyright © 2019 ASME.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)spa
dc.titleDetermination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysisspa
dcterms.bibliographicCitationFarouk, N., Sheng, L., Hayat, Q. Effeect of ambient temperature on the performance of gas turbines power plant (2013) IJCSI International Journal of Computer Science Issues, 10 (nº3), pp. 439-442. Cited 30 times.spa
dcterms.bibliographicCitationBarakat, S., Ramzy, A., Hamed, A.M., El Emam, S.H. Enhancement of gas turbine power output using earth to air heat exchanger (EAHE) cooling system (2016) Energy Conversion and Management, 111, pp. 137-146. Cited 69 times. doi: 10.1016/j.enconman.2015.12.060spa
dcterms.bibliographicCitationDe Paepe, W., Montero Carrero, M., Bram, S., Contino, F., Parente, A. Waste heat recovery optimization in micro gas turbine applications using advanced humidified gas turbine cycle concepts (2017) Applied Energy, 207, pp. 218-229. Cited 56 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2017.06.001spa
dcterms.bibliographicCitationShukla, A.K., Singh, O. Performance evaluation of steam injected gas turbine based power plant with inlet evaporative cooling (2016) Applied Thermal Engineering, 102, pp. 454-464. Cited 47 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.03.136spa
dcterms.bibliographicCitationShukla, A.K., Singh, O. Performance evaluation of steam injected gas turbine based power plant with inlet evaporative cooling (2016) Applied Thermal Engineering, 102, pp. 454-464. Cited 47 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.03.136spa
dcterms.bibliographicCitationShukla, A.K., Singh, O. Thermodynamic investigation of parameters affecting the execution of steam injected cooled gas turbine based combined cycle power plant with vapor absorption inlet air cooling (2017) Applied Thermal Engineering, 122, pp. 380-388. Cited 52 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2017.05.034spa
dcterms.bibliographicCitationDincer, I., Rosen, M. (2013) Exergy: Energy, Environment, and Sustainable Development, Segunda Ed.. Cited 942 times. Oxford: ELSEVIERspa
dcterms.bibliographicCitationChen, J., Havtun, H., Palm, B. Conventional and advanced exergy analysis of an ejector refrigeration system (2015) Applied Energy, 144, pp. 139-151. Cited 164 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2015.01.139spa
dcterms.bibliographicCitationWang, L., Yang, Y., Morosuk, T., Tsatsaronis, G. Advanced thermodynamic analysis and evaluation of a supercritical power plant (2012) Energies, 5 (6), pp. 1850-1863. Cited 92 times. http://www.mdpi.com/1996-1073/5/6/1850/pdf doi: 10.3390/en5061850spa
dcterms.bibliographicCitationTsatsaronis, G., Morosuk, T. Avanced thermodynamic (exergetic) analysis (2012) De 6th European Thermal Sciences Conference Eindhovenspa
dcterms.bibliographicCitationTsatsaronis, G., Kelly, S.O., Morosuk, T.V. Endogenous and exogenous exergy destruction in thermal systems (2006) American Society of Mechanical Engineers, Advanced Energy Systems Division (Publication) AES. Cited 43 times. http://www.asmedl.org/journals/doc/ASMEDL-home/proc/ ISBN: 0791837904; 978-079183790-0 doi: 10.1115/IMECE2006-13675spa
dcterms.bibliographicCitationKelly, S. (2008) Energy Systems Improvement Based on Endogenous and Exogenous Exergy Destruction. Cited 95 times.spa
dcterms.bibliographicCitationTsatsaronis, G., Park, M.-H. On avoidable and unavoidable exergy destructions and investment costs in thermal systems (Open Access) (2002) Energy Conversion and Management, 43 (9-12), pp. 1259-1270. Cited 391 times. doi: 10.1016/S0196-8904(02)00012-2spa
dcterms.bibliographicCitationSoltani, S., Yari, M., Mahmoudi, S.M.S., Morosuk, T., Rosen, M.A. Advanced exergy analysis applied to an externally-fired combined-cycle power plant integrated with a biomass gasification unit (2013) Energy, 59, pp. 775-780. Cited 84 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2013.07.038spa
dcterms.bibliographicCitationŞöhret, Y., Açikkalp, E., Hepbasli, A., Karakoc, T.H. Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts (2015) Energy, Part 2 90, pp. 1219-1228. Cited 83 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2015.06.071spa
dcterms.bibliographicCitationAçikkalp, E., Aras, H., Hepbasli, A. Advanced exergy analysis of an electricity-generating facility using natural gas (2014) Energy Conversion and Management, 82, pp. 146-153. Cited 63 times. doi: 10.1016/j.enconman.2014.03.006spa
dcterms.bibliographicCitationKreuzer, H.J., Tamblyn, I. Thermodynamics (2010) Thermodynamics, pp. 1-225. Cited 19 times. http://www.worldscientific.com/worldscibooks/10.1142/7964#t=toc ISBN: 978-981432998-9; 978-981432752-7 doi: 10.1142/7964spa
dcterms.bibliographicCitation2018) EES "Engineering Equation Solver. Cited 1522 times. F-Chart Software, Wisconsinspa
dcterms.bibliographicCitationSzargut (2007) Egzergia. Poradnik Obliczania I Stosowania. Cited 52 times. Widawnictwo Politechniki Shlaskej,» Gliwicespa
dcterms.bibliographicCitationKelly, S., Tsatsaronis, G., Morosuk, T. Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts (2009) Energy, 34 (3), pp. 384-391. Cited 326 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2008.12.007spa
dcterms.bibliographicCitationAnvavi, S., Khoshbakhti Saray, R., Bahlouli, K. Employing a new optimization strategy based on advanced exergy concept for improvement of a trigeneration system (2016) Applied Thermal Engineering. Cited 2 times.spa
dcterms.bibliographicCitationFallah, M., Siyahi, H., Ghiasi, R.A., Mahmoudi, S.M.S., Yari, M., Rosen, M.A. Comparison of different gas turbine cycles and advanced exergy analysis of the most effective (2016) Energy, Part 1 116, pp. 701-715. Cited 57 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2016.10.009spa
dcterms.bibliographicCitationMarzouk, A., Hanafi, A. Thermo-economic analysis of inlet air cooling in gas turbine plants (2013) Power Technologies, pp. 90-99. Cited 20 times.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1115/IMECE2019-10410
dc.subject.keywordsCosts And Cost Analysis;spa
dc.subject.keywordsExergy;spa
dc.subject.keywordsCogeneration Systemsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.