Mostrar el registro sencillo del ítem
Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis
dc.contributor.author | Barreto, D. | |
dc.contributor.author | Fajardo, J | |
dc.contributor.author | Campillo, J. | |
dc.date.accessioned | 2023-07-18T19:36:12Z | |
dc.date.available | 2023-07-18T19:36:12Z | |
dc.date.issued | 2019 | |
dc.date.submitted | 2023 | |
dc.identifier.citation | Barreto, D., Fajardo, J., & Campillo, J. (2019, November). Determination of the Optimal Range of the Compressor Inlet Air Temperature in a Power Plant With Stig Cycle Through of Advanced Exergetic Analysis. In ASME International Mechanical Engineering Congress and Exposition (Vol. 59438, p. V006T06A070). American Society of Mechanical Engineers. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12151 | |
dc.description.abstract | Conventional exergy analysis identifies the more inefficient components; however, this doesn’t regard interaction between components, neither real improvement potential to each component of the system, this information is providing for the advanced exergy analysis. In this paper was developed an advanced exergy analysis to determine the optimal range of the compressor inlet air temperature, to compensate the power loss in a power plant with Stig cycle and an air cooling system. This plant without cooling system at ISO conditions produce 52 MW, while in local conditions (32 °C, 80%RH) its productions decreases to 44.3MW. The results showed that for every degree centigrade that the air temperature decreases at inlet compressor the power output increases in 0.17 MW and total destroyed exergy increases 0.23 MW. It was determined that for the optimal range of compressor inlet air temperature is between 10 and 12°C; at this range were obtained the highest power output values, and the values of the avoidable and endogenous exergy destroyed are diminished in 0.28 MW and 0.20 MW respectively compared to those given in local operating conditions. Copyright © 2019 ASME. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) | spa |
dc.title | Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis | spa |
dcterms.bibliographicCitation | Farouk, N., Sheng, L., Hayat, Q. Effeect of ambient temperature on the performance of gas turbines power plant (2013) IJCSI International Journal of Computer Science Issues, 10 (nº3), pp. 439-442. Cited 30 times. | spa |
dcterms.bibliographicCitation | Barakat, S., Ramzy, A., Hamed, A.M., El Emam, S.H. Enhancement of gas turbine power output using earth to air heat exchanger (EAHE) cooling system (2016) Energy Conversion and Management, 111, pp. 137-146. Cited 69 times. doi: 10.1016/j.enconman.2015.12.060 | spa |
dcterms.bibliographicCitation | De Paepe, W., Montero Carrero, M., Bram, S., Contino, F., Parente, A. Waste heat recovery optimization in micro gas turbine applications using advanced humidified gas turbine cycle concepts (2017) Applied Energy, 207, pp. 218-229. Cited 56 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2017.06.001 | spa |
dcterms.bibliographicCitation | Shukla, A.K., Singh, O. Performance evaluation of steam injected gas turbine based power plant with inlet evaporative cooling (2016) Applied Thermal Engineering, 102, pp. 454-464. Cited 47 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.03.136 | spa |
dcterms.bibliographicCitation | Shukla, A.K., Singh, O. Performance evaluation of steam injected gas turbine based power plant with inlet evaporative cooling (2016) Applied Thermal Engineering, 102, pp. 454-464. Cited 47 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.03.136 | spa |
dcterms.bibliographicCitation | Shukla, A.K., Singh, O. Thermodynamic investigation of parameters affecting the execution of steam injected cooled gas turbine based combined cycle power plant with vapor absorption inlet air cooling (2017) Applied Thermal Engineering, 122, pp. 380-388. Cited 52 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2017.05.034 | spa |
dcterms.bibliographicCitation | Dincer, I., Rosen, M. (2013) Exergy: Energy, Environment, and Sustainable Development, Segunda Ed.. Cited 942 times. Oxford: ELSEVIER | spa |
dcterms.bibliographicCitation | Chen, J., Havtun, H., Palm, B. Conventional and advanced exergy analysis of an ejector refrigeration system (2015) Applied Energy, 144, pp. 139-151. Cited 164 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2015.01.139 | spa |
dcterms.bibliographicCitation | Wang, L., Yang, Y., Morosuk, T., Tsatsaronis, G. Advanced thermodynamic analysis and evaluation of a supercritical power plant (2012) Energies, 5 (6), pp. 1850-1863. Cited 92 times. http://www.mdpi.com/1996-1073/5/6/1850/pdf doi: 10.3390/en5061850 | spa |
dcterms.bibliographicCitation | Tsatsaronis, G., Morosuk, T. Avanced thermodynamic (exergetic) analysis (2012) De 6th European Thermal Sciences Conference Eindhoven | spa |
dcterms.bibliographicCitation | Tsatsaronis, G., Kelly, S.O., Morosuk, T.V. Endogenous and exogenous exergy destruction in thermal systems (2006) American Society of Mechanical Engineers, Advanced Energy Systems Division (Publication) AES. Cited 43 times. http://www.asmedl.org/journals/doc/ASMEDL-home/proc/ ISBN: 0791837904; 978-079183790-0 doi: 10.1115/IMECE2006-13675 | spa |
dcterms.bibliographicCitation | Kelly, S. (2008) Energy Systems Improvement Based on Endogenous and Exogenous Exergy Destruction. Cited 95 times. | spa |
dcterms.bibliographicCitation | Tsatsaronis, G., Park, M.-H. On avoidable and unavoidable exergy destructions and investment costs in thermal systems (Open Access) (2002) Energy Conversion and Management, 43 (9-12), pp. 1259-1270. Cited 391 times. doi: 10.1016/S0196-8904(02)00012-2 | spa |
dcterms.bibliographicCitation | Soltani, S., Yari, M., Mahmoudi, S.M.S., Morosuk, T., Rosen, M.A. Advanced exergy analysis applied to an externally-fired combined-cycle power plant integrated with a biomass gasification unit (2013) Energy, 59, pp. 775-780. Cited 84 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2013.07.038 | spa |
dcterms.bibliographicCitation | Şöhret, Y., Açikkalp, E., Hepbasli, A., Karakoc, T.H. Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts (2015) Energy, Part 2 90, pp. 1219-1228. Cited 83 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2015.06.071 | spa |
dcterms.bibliographicCitation | Açikkalp, E., Aras, H., Hepbasli, A. Advanced exergy analysis of an electricity-generating facility using natural gas (2014) Energy Conversion and Management, 82, pp. 146-153. Cited 63 times. doi: 10.1016/j.enconman.2014.03.006 | spa |
dcterms.bibliographicCitation | Kreuzer, H.J., Tamblyn, I. Thermodynamics (2010) Thermodynamics, pp. 1-225. Cited 19 times. http://www.worldscientific.com/worldscibooks/10.1142/7964#t=toc ISBN: 978-981432998-9; 978-981432752-7 doi: 10.1142/7964 | spa |
dcterms.bibliographicCitation | 2018) EES "Engineering Equation Solver. Cited 1522 times. F-Chart Software, Wisconsin | spa |
dcterms.bibliographicCitation | Szargut (2007) Egzergia. Poradnik Obliczania I Stosowania. Cited 52 times. Widawnictwo Politechniki Shlaskej,» Gliwice | spa |
dcterms.bibliographicCitation | Kelly, S., Tsatsaronis, G., Morosuk, T. Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts (2009) Energy, 34 (3), pp. 384-391. Cited 326 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2008.12.007 | spa |
dcterms.bibliographicCitation | Anvavi, S., Khoshbakhti Saray, R., Bahlouli, K. Employing a new optimization strategy based on advanced exergy concept for improvement of a trigeneration system (2016) Applied Thermal Engineering. Cited 2 times. | spa |
dcterms.bibliographicCitation | Fallah, M., Siyahi, H., Ghiasi, R.A., Mahmoudi, S.M.S., Yari, M., Rosen, M.A. Comparison of different gas turbine cycles and advanced exergy analysis of the most effective (2016) Energy, Part 1 116, pp. 701-715. Cited 57 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2016.10.009 | spa |
dcterms.bibliographicCitation | Marzouk, A., Hanafi, A. Thermo-economic analysis of inlet air cooling in gas turbine plants (2013) Power Technologies, pp. 90-99. Cited 20 times. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | 10.1115/IMECE2019-10410 | |
dc.subject.keywords | Costs And Cost Analysis; | spa |
dc.subject.keywords | Exergy; | spa |
dc.subject.keywords | Cogeneration Systems | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.