Mostrar el registro sencillo del ítem
Development and implementation of an optical profilometer by laser triangulation
dc.contributor.author | Quintero, Fernando J. | |
dc.contributor.author | Mendoza, Kevin | |
dc.contributor.author | Romero, Lenny A. | |
dc.contributor.author | Marrugo, Andres G. | |
dc.date.accessioned | 2023-07-18T19:33:47Z | |
dc.date.available | 2023-07-18T19:33:47Z | |
dc.date.issued | 2020 | |
dc.date.submitted | 2023 | |
dc.identifier.citation | F. J. Quintero, K. Mendoza, L. A. Romero and A. G. Marrugo, "Desarrollo e implementación de un perfilómetro óptico por triangulación láser," 2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA), Cartagena, Colombia, 2020, pp. 1-6, doi: 10.1109/CIIMA50553.2020.9290307. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12147 | |
dc.description.abstract | Profilometers are instruments commonly used in surface metrology tasks. These instruments play a key role in the industry, such as in manufacturing and quality assurance. However, conventional profilometry techniques require direct contact with the object. In this work, we developed a practical and low-cost optical profilometer for contactless profilometry. The proposed profilometer is based on a laser triangulation system. A laser spot is projected onto the surface of an object, which is captured by a camera. The images are processed to detect the laser spot's location and obtain the object's surface height through calibration. We designed and built the translation stage to process the object's surface. Finally, encouraging results show that the profilometer provides high accuracy with fast acquisition. © 2020 IEEE. | spa |
dc.format.extent | 6 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | 2020 9th International Congress of Mechatronics Engineering and Automation, CIIMA 2020 - Conference Proceedings | spa |
dc.title | Development and implementation of an optical profilometer by laser triangulation | spa |
dc.title.alternative | Desarrollo e implementación de un perfilómetro óptico por triangulación láser | spa |
dcterms.bibliographicCitation | Son, S., Takatori, S.C., Belardi, B., Podolski, M., Bakalara, M.H., Fletcher, D.A. Molecular height measurement by cell surface optical profilometry (CSOP) (2020) Proceedings of the National Academy of Sciences of the United States of America, 117 (25), pp. 14209-14219. Cited 12 times. https://www.pnas.org/content/pnas/117/25/14209.full.pdf doi: 10.1073/pnas.1922626117 | spa |
dcterms.bibliographicCitation | Chen, L.-C., Huang, C.-C. Miniaturized 3D surface profilometer using digital fringe projection (2005) Measurement Science and Technology, 16 (5), pp. 1061-1068. Cited 68 times. http://www.iop.org/EJ/journal/0957-0233 doi: 10.1088/0957-0233/16/5/003 | spa |
dcterms.bibliographicCitation | Townsend, A., Senin, N., Blunt, L., Leach, R.K., Taylor, J.S. Surface texture metrology for metal additive manufacturing: a review (2016) Precision Engineering, 46, pp. 34-47. Cited 487 times. doi: 10.1016/j.precisioneng.2016.06.001 | spa |
dcterms.bibliographicCitation | Wagh, R.A., Panse, M.S., Apte, H. (2015) Calibration Method for Height Measurement of Object Using Laser Triangulation, 3 (4), pp. 27-31. | spa |
dcterms.bibliographicCitation | Lee, K.-C., Yang, J.-S., Yu, H.H. Development and evaluation of a petal thickness measuring device based on the dual laser triangulation method (2013) Computers and Electronics in Agriculture, 99, pp. 85-92. Cited 17 times. www.elsevier.com/inca/publications/store/5/0/3/3/0/4 doi: 10.1016/j.compag.2013.09.001 | spa |
dcterms.bibliographicCitation | Pettigrew, R.M., Hancock, F.J. Optical profilometer (2016) Ergonomics, pp. 1-6. 10031 | spa |
dcterms.bibliographicCitation | Marrugo, A.G., Gao, F., Zhang, S. State-of-the-art active optical techniques for three-dimensional surface metrology: a review [Invited] (2020) Journal of the Optical Society of America A: Optics and Image Science, and Vision, 37 (9), pp. B60-B77. Cited 102 times. https://www.osapublishing.org/abstract.cfm?URI=josaa-37-9-B60 doi: 10.1364/JOSAA.398644 | spa |
dcterms.bibliographicCitation | Ang, K.T., Fang, Z.P., Tay, A. Note: Development of high speed confocal 3D profilometer (Open Access) (2014) Review of Scientific Instruments, 85 (11), art. no. 116103. Cited 7 times. http://scitation.aip.org/content/aip/journal/rsi doi: 10.1063/1.4901518 | spa |
dcterms.bibliographicCitation | Wu, C., Chen, B., Ye, C. Detecting defects on corrugated plate surfaces using a differential laser triangulation method (2020) Optics and Lasers in Engineering, 129, art. no. 106064. Cited 6 times. https://www.journals.elsevier.com/optics-and-lasers-in-engineering doi: 10.1016/j.optlaseng.2020.106064 | spa |
dcterms.bibliographicCitation | Adamov, A.A., Baranov, M.S., Khramov, V.N., Abdrakhmanov, V.L., Golubev, A.V., Chechetkin, I.A. Modified method of laser triangulation (Open Access) (2018) Journal of Physics: Conference Series, 1135 (1), art. no. 012049. Cited 3 times. http://iopscience.iop.org/journal/1742-6596 doi: 10.1088/1742-6596/1135/1/012049 | spa |
dcterms.bibliographicCitation | Struckmeier, F., Zhao, J., León, F.P. Measuring the supporting slats of laser cutting machines using laser triangulation (Open Access) (2020) International Journal of Advanced Manufacturing Technology, 108 (11-12), pp. 3819-3833. Cited 3 times. http://www.springerlink.com/content/0268-3768 doi: 10.1007/s00170-020-05640-z | spa |
dcterms.bibliographicCitation | Latimer, W. Understanding laser-based 3D triangulation methods (2015) Vis. Syst. Des., 20 (6), pp. 31-35. Cited 5 times. https://www.vision-systems.com/magazine/577442 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | 10.1109/CIIMA50553.2020.9290307 | |
dc.subject.keywords | Laser triangulation; | spa |
dc.subject.keywords | Optical profilometer; | spa |
dc.subject.keywords | Surface metrology; | spa |
dc.subject.keywords | Surface profile | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.