Mostrar el registro sencillo del ítem

dc.contributor.authorGiraldo-Guzman, Jader
dc.contributor.authorContreras-Ortiz, Sonia H.
dc.contributor.authorCastells, Francisco
dc.contributor.authorKotas, Marian
dc.coverage.spatialColombia
dc.date.accessioned2023-07-18T19:31:46Z
dc.date.available2023-07-18T19:31:46Z
dc.date.issued2021-10
dc.date.submitted2023-07
dc.identifier.citationJ. Giraldo-Guzman, S. H. Contreras-Ortiz, F. Castells and M. Kotas, "Spatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classification," 2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI), Bogota D.C., Colombia, 2021, pp. 1-6, doi: 10.1109/CI-IBBI54220.2021.9626098.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12140
dc.description.abstractAtrial fibrillation (AF) is the most common cardiac arrhythmia and increases the risk of suffering stroke. Some people with AF do not have symptoms, so, its diagnosis can be difficult, especially in early stages of the disease. In this paper, we propose the use of the spatio-Temporal filter (STF) to characterize atrial activity in ECG recordings and distinguish between normal sinus rhythm (NSR) and atrial arrhythmias. This method allows the effective detection of P waves when they are synchronized with QRS complexes. The distances from the QRS complexes to the detected P waves are characterized by seven dispersion metrics that are used as inputs to three clustering algorithms. The results show classification accuracy of up to 98.88% of NSR and atrial arrhythmias.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.source2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering, CI-IB and BI 2021spa
dc.titleSpatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classificationspa
dcterms.bibliographicCitationCardiovascular Diseases. Cited 1008 times. W. H. Organization lhttp://www.who.int/mediacentre/factsheets/fs317/en/2017spa
dcterms.bibliographicCitationJl, R.V.U. (1983) Sage Risk of Recurrent Stroke in Patients with Atrial Fibrillation and Non-valvular Heart Disease Strokespa
dcterms.bibliographicCitationCotter, P.E., Martin, M.P.J., Ring, L., Warburton, E.A., Belham, M., Pugh, P.J. Incidence of atrial fibrillation detected by implantable loop recorders in unexplained stroke (2013) Neurology, 80 (17), pp. 1546-1550. Cited 203 times. doi: 10.1212/WNL.0b013e31828f1828spa
dcterms.bibliographicCitationJiménez-Serrano, S., Yagüe-Mayans, J., Simarro-Mondéjar, E., Calvo, C.J., Castells, F., Millet, J. Atrial fibrillation detection using feedforward neural networks and automatically extracted signal features (2017) Computing in Cardiology, 44, pp. 1-4. Cited 20 times. http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000157 doi: 10.22489/CinC.2017.341-131spa
dcterms.bibliographicCitationBashar, S.K., DIng, E., Albuquerque, D., Winter, M., Binici, S., Walkey, A.J., McManus, D.D., (...), Chon, K.H. Atrial Fibrillation Detection in ICU Patients: A Pilot Study on MIMIC III Data∗ (Open Access) (2019) Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, art. no. 8856496, pp. 298-301. Cited 10 times. ISBN: 978-153861311-5 doi: 10.1109/EMBC.2019.8856496spa
dcterms.bibliographicCitationAndersen, R.S., Poulsen, E.S., Puthusserypady, S. A novel approach for automatic detection of Atrial Fibrillation based on Inter Beat Intervals and Support Vector Machine (2017) Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, art. no. 8037253, pp. 2039-2042. Cited 25 times. ISBN: 978-150902809-2 doi: 10.1109/EMBC.2017.8037253spa
dcterms.bibliographicCitationMei, Z., Gu, X., Chen, H., Chen, W. Automatic atrial fibrillation detection based on heart rate variability and spectral features (Open Access) (2018) IEEE Access, 6, art. no. 8468160, pp. 53566-53575. Cited 30 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2018.2871220spa
dcterms.bibliographicCitationIslam, S., Ammour, N., Alajlan, N. Atrial fibrillation detection with multiparametric rr interval feature and machine learning technique (2017) , pp. 1-5.spa
dcterms.bibliographicCitationKruger, G.H., Latchamsetty, R., Langhals, N.B., Yokokawa, M., Chugh, A., Morady, F., Oral, H., (...), Berenfeld, O. Bimodal classification algorithm for atrial fibrillation detection from m-health ECG recordings (2019) Computers in Biology and Medicine, 104, pp. 310-318. Cited 15 times. www.elsevier.com/locate/compbiomed doi: 10.1016/j.compbiomed.2018.11.016spa
dcterms.bibliographicCitationRódenas, J., García, M., Alcaraz, R., Rieta, J.J. Wavelet entropy automatically detects episodes of atrial fibrillation from single-lead electrocardiograms (2015) Entropy, 17 (9), pp. 6179-6199. Cited 48 times. http://www.mdpi.com/1099-4300/17/9/6179/pdf doi: 10.3390/e17096179spa
dcterms.bibliographicCitationGarcia Teruel, M., Rieta Ibañez, J.J., Alcaraz Martinez, R., Rodenas Garcia, J. Application of the relative wavelet energy to 1 heart rate independent detection of atrial fibrillation (2016)spa
dcterms.bibliographicCitationLadavich, S., Ghoraani, B. Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity (Open Access) (2015) Biomedical Signal Processing and Control, 18, pp. 274-281. Cited 113 times. http://www.elsevier.com/wps/find/journalbibliographicinfo.cws_home/706718/description#bibliographicinfo doi: 10.1016/j.bspc.2015.01.007spa
dcterms.bibliographicCitationHe, R., Wang, K., Zhao, N., Liu, Y., Yuan, Y., Li, Q., Zhang, H. Automatic detection of atrial fibrillation based on continuous wavelet transform and 2D convolutional neural networks (2018) Frontiers in Physiology, 9 (AUG), art. no. 1206. Cited 79 times. https://www.frontiersin.org/articles/10.3389/fphys.2018.01206/full doi: 10.3389/fphys.2018.01206spa
dcterms.bibliographicCitationXia, Y., Wulan, N., Wang, K., Zhang, H. Detecting atrial fibrillation by deep convolutional neural networks (2018) Computers in Biology and Medicine, 93, pp. 84-92. Cited 213 times. www.elsevier.com/locate/compbiomed doi: 10.1016/j.compbiomed.2017.12.007spa
dcterms.bibliographicCitationZaidi, S.H., Sheikh, S.-A.A., Akhtar, I., Zaidi, T. Differentiation between Atrial Fibrillation and Atrial Flutter using 1D Poincare Maps based on endocardial bipolar intracardiac electrograms extracted from the Right Atria (2016) Proceedings of 2016 13th International Bhurban Conference on Applied Sciences and Technology, IBCAST 2016, art. no. 7429858, pp. 77-84. ISBN: 978-146739127-6 doi: 10.1109/IBCAST.2016.7429858spa
dcterms.bibliographicCitationRazzaq, N., Sheikh, S.-A.A., Zaidi, T., Akhtar, I., Ahmed, S.H. Automated differentiation between normal sinus rhythm, atrial tachycardia, atrial flutter and atrial fibrillation during electrophysiology (2017) Proceedings - 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering, BIBE 2017, 2018-January, pp. 266-272. Cited 3 times. ISBN: 978-153861324-5 doi: 10.1109/BIBE.2017.00-43spa
dcterms.bibliographicCitationFujita, H., Cimr, D. Computer Aided detection for fibrillations and flutters using deep convolutional neural network (Open Access) (2019) Information Sciences, 486, pp. 231-239. Cited 110 times. http://www.journals.elsevier.com/information-sciences/ doi: 10.1016/j.ins.2019.02.065spa
dcterms.bibliographicCitationKotas, M., Jezewski, J., Horoba, K., Matonia, A. Application of spatio-temporal filtering to fetal electrocardiogram enhancement (2011) Computer Methods and Programs in Biomedicine, 104 (1), pp. 1-9. Cited 45 times. doi: 10.1016/j.cmpb.2010.07.004spa
dcterms.bibliographicCitationGiraldo-Guzmán, J., Kotas, M., Piela, M., Castells, F., Łęski, J.M., Contreras-Ortiz, S.H. Application of spatio-temporal filtering for atrial activity waveforms enhancement (2019) ACM International Conference Proceeding Series, pp. 67-72. Cited 2 times. http://portal.acm.org/ ISBN: 978-145037243-5 doi: 10.1145/3365245.3365262spa
dcterms.bibliographicCitationLeski, J.M., Kotas, M. Hierarchical clustering with planar segments as prototypes (Open Access) (2015) Pattern Recognition Letters, 54, pp. 1-10. Cited 11 times. http://www.journals.elsevier.com/pattern-recognition-letters/ doi: 10.1016/j.patrec.2014.11.012spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1109/CI-IBBI54220.2021.9626098
dc.subject.keywordsAtrial fibrillationspa
dc.subject.keywordsECG signal processingspa
dc.subject.keywordsP wavespa
dc.subject.keywordsQRST cancellationspa
dc.subject.keywordsSpatio-Temporal filteringspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.