Mostrar el registro sencillo del ítem
Distributed Energy Resources Parameter Monitoring in Microgrids Using Blockchain and Edge Computing
dc.contributor.author | Campillo, J. | |
dc.contributor.author | Dominguez-Jimenez, J.A. | |
dc.contributor.author | Ariza, H. | |
dc.contributor.author | Payares, E.D. | |
dc.contributor.author | Martinez-Santos, J.C. | |
dc.date.accessioned | 2023-07-18T19:31:17Z | |
dc.date.available | 2023-07-18T19:31:17Z | |
dc.date.issued | 2020 | |
dc.date.submitted | 2023 | |
dc.identifier.citation | Campillo, J., Dominguez-Jimenez, J. A., Ariza, H., Payares, E. D., & Martinez-Santos, J. C. (2020, December). Distributed energy resources parameter monitoring in microgrids using blockchain and edge computing. In 2020 IEEE PES Transactive Energy Systems Conference (TESC) (pp. 1-5). IEEE. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12136 | |
dc.description.abstract | An increased share of distributed renewable energy sources requires flexible tools for providing reliable and cheap electricity. Smart meters provide information at the consumer level, which could be used as the main source for real-time energy micro-transactions, however, one of the main concerns about direct transactions is information security. Conventional electricity markets rely on centralized information exchange, nevertheless, when intra-day, distributed, electricity consumption and production exchanges are required between customers, this approach might not be enough. This paper presents a proof-of-concept for using Blockchain as a tool for managing the operational transactions in a DC microgrid. The distributed nature of this technology provides an inherently safer approach, by providing an immutable database for transaction history. One of the challenges of using this technology, however, is the required computing power at the nodes and the limited capacity available in the smart meter. To overcome these issues, the authors used a distributed computing technology,-edge computing-, where computation and storage are located closer to the customer, to improve response times by handling the required computational tasks of the Blockchain tool. This approach proved not only to be practically viable but also, offers important insights about the scalability and capabilities of the technology. © 2020 IEEE. | spa |
dc.format.extent | 5 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | 2020 IEEE PES Transactive Energy Systems Conference, TESC 2020 | spa |
dc.title | Distributed Energy Resources Parameter Monitoring in Microgrids Using Blockchain and Edge Computing | spa |
dcterms.bibliographicCitation | (2019) World Energy Outlook 2018. Cited 440 times. I. E. Agency. IEA, Tech. Rep. | spa |
dcterms.bibliographicCitation | Yu, X., Xue, Y. Smart Grids: A Cyber-Physical Systems Perspective (2016) Proceedings of the IEEE, 104 (5), art. no. 7433937, pp. 1058-1070. Cited 490 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5 doi: 10.1109/JPROC.2015.2503119 | spa |
dcterms.bibliographicCitation | Borlase, S. (2016) Smart Grids: Infrastructure, Technology, and Solutions.. Cited 177 times. CRC Press | spa |
dcterms.bibliographicCitation | Scheffran, J., Felkers, M., Froese, R. Economic growth and the global energy demand (2020) Green Energy to Sustainability: Strategies for Global Industries, pp. 3-44. Cited 17 times. https://www.wiley.com/en-us/Green+Energy+to+Sustainability%3A+Strategies+for+Global+Industries-p-9781119152026 ISBN: 978-111915205-7; 978-111915202-6 doi: 10.1002/9781119152057.ch1 | spa |
dcterms.bibliographicCitation | Farrokhabadi, M., Lagos, D., Wies, R.W., Paolone, M., Liserre, M., Meegahapola, L., Kabalan, M., (...), Hatziargyriou, N. Microgrid Stability Definitions, Analysis, and Examples (2020) IEEE Transactions on Power Systems, 35 (1), art. no. 8750828, pp. 13-29. Cited 325 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2019.2925703 | spa |
dcterms.bibliographicCitation | Mackay, L., Hailu, T., Ramirez-Elizondo, L., Bauer, P. Towards a DC distribution system-opportunities and challenges (2015) 2015 IEEE 1st International Conference on Direct Current Microgrids, ICDCM 2015, art. no. 7152041, pp. 215-220. Cited 31 times. ISBN: 978-147999879-1 doi: 10.1109/ICDCM.2015.715204 | spa |
dcterms.bibliographicCitation | Mutarraf, M.U., Terriche, Y., Niazi, K.A.K., Vasquez, J.C., Guerrero, J.M. Energy storage systems for shipboard microgrids—A review (2018) Energies, 11 (12), art. no. 3492. Cited 81 times. https://www.mdpi.com/1996-1073/11/12 doi: 10.3390/en11123492 | spa |
dcterms.bibliographicCitation | Marzal, S., Salas, R., González-Medina, R., Garcerá, G., Figueres, E. Current challenges and future trends in the field of communication architectures for microgrids (Open Access) (2018) Renewable and Sustainable Energy Reviews, Part 3 82, pp. 3610-3622. Cited 87 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2017.10.101 | spa |
dcterms.bibliographicCitation | (2020) Global co2 Emissions in 2019. Cited 109 times. I. E. Agency. Feb. https://www.iea.org/articles/global-co2-emissions-in-2019 | spa |
dcterms.bibliographicCitation | (2020) Electric Vehicles. Cited 16 times. Feb. https://www.iea.org/fuels-and-technologies/electric-vehicles | spa |
dcterms.bibliographicCitation | Gallo, A.B., Simões-Moreira, J.R., Costa, H.K.M., Santos, M.M., Moutinho dos Santos, E. Energy storage in the energy transition context: A technology review (2016) Renewable and Sustainable Energy Reviews, 65, pp. 800-822. Cited 393 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2016.07.028 | spa |
dcterms.bibliographicCitation | Heitel, S., Seddig, K., Vilchez, J.J.G., Jochem, P. Global electric car market deployment considering endogenous battery price development (Open Access) (2019) Technological Learning in the Transition to a Low-Carbon Energy System: Conceptual Issues, Empirical Findings, and Use, in Energy Modeling, pp. 281-305. Cited 11 times. http://www.sciencedirect.com/science/book/9780128187623 ISBN: 978-012818762-3 doi: 10.1016/B978-0-12-818762-3.00015-7 | spa |
dcterms.bibliographicCitation | Stevenson, M. Lithium-ion battery packs now 209perkwh;willfallto100 by 2025: Bloomberg analysis (2017) Green Car Reports. Cited 4 times. | spa |
dcterms.bibliographicCitation | Warner, J.T. Lithium-ion battery chemistries: A primer (2019) Lithium-Ion Battery Chemistries: A Primer, pp. 1-353. Cited 28 times. https://www.sciencedirect.com/book/9780128147788 ISBN: 978-012814779-5; 978-012814778-8 doi: 10.1016/C2017-0-02140-7 | spa |
dcterms.bibliographicCitation | Cardenas, A., Guzman, C., Chemsi, M., Agbossou, K. Development of AC microgrid test bench with Hydrogen fuel cell and renewable sources (2016) Asia-Pacific Power and Energy Engineering Conference, APPEEC, 2016-December, art. no. 7779534, pp. 397-402. Cited 3 times. http://ieeexplore.ieee.org/xpl/conferences.jsp ISBN: 978-150905418-3 doi: 10.1109/APPEEC.2016.7779534 | spa |
dcterms.bibliographicCitation | Campillo, J., Barberis, S., Traverso, A., Kyprianidis, K., Vassileva, I. Open-source modelling and simulation of microgrids and active distribution networks (2015) Sustainable Places 2015, p. 91. Cited 3 times. | spa |
dcterms.bibliographicCitation | Unamuno, E., Barrena, J.A. Hybrid ac/dc microgrids - Part I: Review and classification of topologies (2015) Renewable and Sustainable Energy Reviews, 52, pp. 1251-1259. Cited 237 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2015.07.194 View at Publisher | spa |
dcterms.bibliographicCitation | Gil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) Journal of Energy Storage, 21, pp. 1-8. Cited 90 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2018.10.025 | spa |
dcterms.bibliographicCitation | Bayati, N., Hajizadeh, A., Soltani, M. Protection in DC microgrids: A comparative review (Open Access) (2018) IET Smart Grid, 1 (3), pp. 66-75. Cited 125 times. http://digital-library.theiet.org/content/journals/iet-stg doi: 10.1049/iet-stg.2018.0035 | spa |
dcterms.bibliographicCitation | Zhang, X., Chen, Y., Mollet, Y., Yang, J., Gyselinck, J. An accurate discrete current controller for high-speed PMSMS/GS in flywheel applications (Open Access) (2020) Energies, 13 (6), art. no. 1458. Cited 3 times. https://www.mdpi.com/1996-1073/13/6/1458 doi: 10.3390/en13061458 | spa |
dcterms.bibliographicCitation | Wu, R., Sansavini, G. (2020) Integrating Reliability and Resilience to Support Microgrid Design | spa |
dcterms.bibliographicCitation | Jayamaha, D.K.J.S., Lidula, N.W.A., Rajapakse, A.D. Protection and grounding methods in DC microgrids: Comprehensive review and analysis (2020) Renewable and Sustainable Energy Reviews, 120, art. no. 109631. Cited 28 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2019.109631 | spa |
dcterms.bibliographicCitation | Cagnano, A., De Tuglie, E., Mancarella, P. Microgrids: Overview and guidelines for practical implementations and operation (2020) Applied Energy, 258, art. no. 114039. Cited 151 times. https://www.journals.elsevier.com/applied-energy doi: 10.1016/j.apenergy.2019.114039 | spa |
dcterms.bibliographicCitation | Campillo, J., Dahlquist, E., Wallin, F., Vassileva, I. Is real-time electricity pricing suitable for residential users without demand-side management? (2016) Energy, 109, pp. 310-325. Cited 53 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2016.04.105 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | 10.1109/TESC50295.2020.9656872 | |
dc.subject.keywords | Microgrid; | spa |
dc.subject.keywords | DC-DC Converter; | spa |
dc.subject.keywords | Electric Potential | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.