Mostrar el registro sencillo del ítem

dc.contributor.authorFajardo, J.
dc.contributor.authorBarreto, D.
dc.contributor.authorCastro, T.
dc.contributor.authorBaldiris, I.
dc.date.accessioned2023-07-18T19:26:14Z
dc.date.available2023-07-18T19:26:14Z
dc.date.issued2020
dc.date.submitted2023
dc.identifier.citationFajardo, J., Barreto, D., Castro, T., & Baldiris, I. (2020, November). Effect of the Environmental Conditions of Tropical Climates on the Performance Parameters of a Gas Turbine Power Generation Plant. In ASME International Mechanical Engineering Congress and Exposition (Vol. 84560, p. V008T08A048). American Society of Mechanical Engineers.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12131
dc.description.abstractIt is known that high temperatures adversely affect the performance of gas turbines, but the effect of the combination of atmospheric conditions (temperature and relative humidity -RH- ) on the operation of this type of system is unknown. In this work the effects of atmospheric conditions on the energy and exergy indicators of a power plant with gas turbine were studied. The indicators studied were the mass flow, the specific work consumed by the compressor, specific work produced by the turbine, the combustion gas temperature, the NO concentration, the net output power, the thermal efficiency, the heat rate, the specific consumption of fuel, the destruction of exergy and exergy efficiency. Among the results, it is noted that for each degree celsius that reduces the temperature of the air at the compressor inlet at constant relative humidity on average, the mass flow of dry air increases by 0.27 kg/s, the specific work consumed by the compressors decreases by 0.45%, the output power increases by 1.17% and the thermal efficiency increases by 0.8%, the exergy destruction increases by 0.72% and the exergy efficiency increases by 0.81%. In addition, humidity changes relative to high temperatures are detected more significantly than at low temperatures. The power plant studied is installed in Cartagena, Colombia and since it is not operating in the design environmental conditions (15 C and 60% relative humidity) it experiences a loss of output power of 6140 kW and a drop in thermal efficiency of 5.12 %. These results allow considering the implementation of air cooling technologies at the compressor inlet to compensate for the loss of power at atmospheric air conditions. © 2020 ASME.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)spa
dc.titleEFFECT of the ENVIRONMENTAL CONDITIONS of TROPICAL CLIMATES on the PERFORMANCE PARAMETERS of A GAS TURBINE POWER GENERATION PLANT Fajardo J. ; Barreto D. ; Castro T. ;spa
dcterms.bibliographicCitationMarzouk, A., Hanafi, A. Thermo-Economic Analysis of Inlet Air Cooling In Gas Turbine Plants (2013) Journal of Power Technologies, pp. 90-99. Cited 20 times.spa
dcterms.bibliographicCitation(2017) Independent Statistics Analysis U. S. Energy Informacion Administration. Cited 2 times. EAI, 5 Enero [Online]. Available: [Accessed 25 Febrero 2017] https://www.eia.gov/outlooks/aeo/spa
dcterms.bibliographicCitationFarouk, N., Sheng, L., Hayat, Q. Effeect of Ambient temperature on the performance of Gas Turbines Power Plant (2013) IJCSI International Journal of Computer Science Issues, 10 (3), pp. 439-442. Cited 30 times.spa
dcterms.bibliographicCitationKakaras, E., Prelipceanu, A., Doukelis, A., Karellas, S. Inlet air cooling methods for gas turbine based power plants (2004) Proceedings of the ASME Turbo Expo 2004, 5 A, pp. 57-64. Cited 6 times. doi: 10.1115/gt2004-53765spa
dcterms.bibliographicCitationDe Sa, A., Al Zubaidy, S. Gas turbine performance at varying ambient temperature (2011) Applied Thermal Engineering, 31 (14-15), pp. 2735-2739. Cited 129 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2011.04.045spa
dcterms.bibliographicCitationEl-Shazly, A.A., Elhelw, M., Sorour, M.M., El-Maghlany, W.M. Gas turbine performance enhancement via utilizing different integrated turbine inlet cooling techniques (2016) Alexandria Engineering Journal, 55 (3), pp. 1903-1914. Cited 29 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724292/description#description doi: 10.1016/j.aej.2016.07.036spa
dcterms.bibliographicCitationGonzález-Díaz, A., Alcaráz-Calderón, A.M., González-Díaz, M.O., Méndez-Aranda, Á., Lucquiaud, M., González-Santaló, J.M. Effect of the ambient conditions on gas turbine combined cycle power plants with post-combustion CO2 capture (2017) Energy, 134, pp. 221-233. Cited 47 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2017.05.020spa
dcterms.bibliographicCitationBarakat, S., Ramzy, A., Hamed, A.M., El Emam, S.H. Augmentation of gas turbine performance using integrated EAHE and Fogging Inlet Air Cooling System (2019) Energy, 189, art. no. 116133. Cited 29 times. https://www.journals.elsevier.com/energy doi: 10.1016/j.energy.2019.116133spa
dcterms.bibliographicCitationMatjanov, E. Gas turbine efficiency enhancement using absorption chiller. Case study for Tashkent CHP (2020) Energy, 192, art. no. 116625. Cited 23 times. https://www.journals.elsevier.com/energy doi: 10.1016/j.energy.2019.116625spa
dcterms.bibliographicCitationErdem, H.H., Sevilgen, S.H. Case study: Effect of ambient temperature on the electricity production and fuel consumption of a simple cycle gas turbine in Turkey (2006) Applied Thermal Engineering, 26 (2-3), pp. 320-326. Cited 47 times. doi: 10.1016/j.applthermaleng.2005.08.002spa
dcterms.bibliographicCitation(2017) Exploratory success in Gorgon confirms new deepwater gas province in the Colombian Caribbean ECOPETROLspa
dcterms.bibliographicCitation(2019) Monthly report on generation variables and the Colombian electricity market UPME, Bogotaspa
dcterms.bibliographicCitationCaribbean climatology CIOH Oceanografia Operacional, [Online]. Available: [Accessed 10 10 2017] https://www.cioh.org.co/meteorologia/Climatologia/ResumenCartagena4.phpspa
dcterms.bibliographicCitationRueda Martínez, F., Rueda Martínez, A., Toledo Velázquez, M., Quinto Diez, P., Tolentino Eslava, G., Abugaber Francis, J. Evaluation of the Gas Turbine Inlet Temperature with Relation to the Excess Air (2011) Energy and Power engineering, pp. 517-524. Cited 22 times.spa
dcterms.bibliographicCitation(2018) Engineering Equation Solver. Cited 1522 times. F-Chart Software, EES Wisconsinspa
dcterms.bibliographicCitationFamiliarization supplement with the LM 5000 turbine (1992) GE Marine & industrial Engines GE, EE. UUspa
dcterms.bibliographicCitationAminyavari, M., Mamaghani, A.H., Shirazi, A., Najafi, B., Rinaldi, F. Exergetic, economic, and environmental evaluations and multi-objective optimization of an internal-reforming SOFC-gas turbine cycle coupled with a Rankine cycle (2016) Applied Thermal Engineering, 108, pp. 833-846. Cited 97 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.07.180spa
dcterms.bibliographicCitationSantos, A.P., Andrade, C.R. Analysis of gas turbine performance with inlet air cooling techniques applied to Brazilian sites (2012) Journal of Aerospace Technology and Management, 4 (3), pp. 341-353. Cited 23 times. http://www.jatm.com.br/papers/vol4_n3/JATMv4n3_p341-354_Analysis_of_Gas_Turbine_Performance_with_Inlet_Air_Cooling_Techniques_Applied_to_Brazilian_Sites.pdf doi: 10.5028/jatm.2012.04032012spa
dcterms.bibliographicCitationBejan, A., Tsatsaronis, G., Moran, M. (1996) Thermal Desing and Optimazation. Cited 4557 times. New York: John Wiley & Sonsspa
dcterms.bibliographicCitationKreuzer, H.J., Tamblyn, I. Thermodynamics (2010) Thermodynamics, pp. 1-225. Cited 19 times. http://www.worldscientific.com/worldscibooks/10.1142/7964#t=toc ISBN: 978-981432998-9; 978-981432752-7 doi: 10.1142/7964spa
dcterms.bibliographicCitationZhu, G., Chow, T.T., Fong, K.F., Lee, C.K. Comparative study on humidified gas turbine cycles with different air saturator designs (2019) Applied Energy, 254, art. no. 113592. Cited 21 times. https://www.journals.elsevier.com/applied-energy doi: 10.1016/j.apenergy.2019.113592spa
dcterms.bibliographicCitationSaghafifar, M., Omar, A., Erfanmoghaddam, S., Gadalla, M. Thermo-economic analysis of recuperated Maisotsenko bottoming cycle using triplex air saturator: Comparative analyses (2017) Applied Thermal Engineering, 111, pp. 431-444. Cited 23 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.09.100spa
dcterms.bibliographicCitationAgarwal, S., Kachhwaha, S., Mishra, R. Performance improvement of a regenerative gas turbine cycle through integrated inlet air evaporative cooling and steam injection (2012) International of Emergening Technology and Advanced Engineering, 2, pp. 354-363. Cited 2 times.spa
dcterms.bibliographicCitationShukla, A.K., Singh, O. Performance evaluation of steam injected gas turbine based power plant with inlet evaporative cooling (2016) Applied Thermal Engineering, 102, pp. 454-464. Cited 47 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.03.136spa
dcterms.bibliographicCitationDincer, I., Rosen, M. (2013) Exergy: energy, environment, and sustainable development. Cited 942 times. Oxford: ELSEVIERspa
dcterms.bibliographicCitationŞöhret, Y., Açikkalp, E., Hepbasli, A., Karakoc, T.H. Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts (Open Access) (2015) Energy, Part 2 90, pp. 1219-1228. Cited 83 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2015.06.071spa
dcterms.bibliographicCitationSzargut (2007) Egzergia. Poradnik obliczania I stosowania, Widawnictwo Politechniki Shlaskej. Cited 52 times. Gliwicespa
dcterms.bibliographicCitationBarreto, D., Fajardo, J., Javier, C. Determination of the optimal range of the compressor inlet air temperature in a power plant with STIG through of advanced exergy analysis (2019) Procedings of the 19th International Mechanical Engineering Congress and Exposition, 19.spa
dcterms.bibliographicCitationJassim, R., Zaki, G., Habeebullah, B., Alhazmy, M. Thermo-Economic Analysis of Gas Turbine Plants with Inlet Cooled Air intake (2015) International Journal of Energy and Power Engineering, 4, pp. 205-215. Cited 6 times.spa
dcterms.bibliographicCitationWeather Underground (2019) IBM Cloud The Weather company, 5 Enero [Online]. Available: [Accessed 5 Enero 2019] https://www.wunderground.com/history/monthly/co/cartagena/SKCG/date/2018-1spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1115/IMECE2020-23153
dc.subject.keywordsGas Turbines;spa
dc.subject.keywordsGas;spa
dc.subject.keywordsAir Coolingspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.