Mostrar el registro sencillo del ítem

dc.contributor.authorTorres-Osorio, Lenin
dc.contributor.authorMunera-Gomez, Marlon
dc.contributor.authorFennix-Agudelo, Mary
dc.contributor.authorChavarro-Mesa, Edisson
dc.date.accessioned2023-07-18T19:24:44Z
dc.date.available2023-07-18T19:24:44Z
dc.date.issued2021-10-13
dc.date.submitted2023-07
dc.identifier.citationL. Torres-Osorio, M. Múnera-Gómez, M. Fennix-Agudelo and E. Chavarro-Mesa, "Virtual screening of new targets and inhibitors for Candida albicans infection control," 2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI), Bogotá D.C., Colombia, 2021, pp. 1-5, doi: 10.1109/CI-IBBI54220.2021.9626093.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12126
dc.description.abstractInfection by Candida albicans fungus is considered of biomedical interest, producing significant mortality and comorbidity. The development of pathogen resistance during pharmacological treatments is increasing, thus, the pursuit for new inhibitors is necessary. Virtual screening is one of the bioinformatics tools used for the search of new drugs, and potential targets for disease management. The aim of the present study was to analyze a library of potential targets, and to identify suppressors for C. albicans using virtual screening. 50 protein targets with restraining potential were examined, choosing GPI-Anchored hemophore PGA10 protein (RBT5) as the target, since it is involved in C. albicans survival and nutrients acquisition. Meanwhile, through the implementation of AutoDock Vina and PyRx software, the molecular affinity of 25 molecules available in ZINC15 database was analyzed, obtaining favorable results for the following compounds: ZINC000000065058, ZINC000000065374 and ZINC000000072389, displaying affinity with the same region of the target protein. These results provide a potential target for the development of novel suppressors, as well as guidelines for three new drugs that could aid in C. albicans suppressionspa
dc.format.mediumPdf
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.source2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI)spa
dc.titleVirtual screening of new targets and inhibitors for Candida albicans infection controlspa
dcterms.bibliographicCitationL. J. Douglas, "Candida biofilms and their role in infection", Trends Microbiol., vol. 11, no. 1, pp. 30-36, 2003.spa
dcterms.bibliographicCitationS. G. Whaley, E. L. Berkow, J. M. Rybak, A. T. Nishimoto, K. S. Barker and P. D. Rogers, "Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species", Frontiers in Microbiology, vol. 7, pp. 2173, 2017.spa
dcterms.bibliographicCitationZ. Farhadi, T. Farhadi and S. M. Hashemian, "Virtual screening for potential inhibitors of β(13)-D-glucan synthase as drug candidates against fungal cell wall", J. Drug Assess., vol. 9, no. 1, pp. 52-59, Jan. 2020.spa
dcterms.bibliographicCitationN. S. Pagadala, K. Syed and J. Tuszynski, "Software for molecular docking: a review", Biophys. Rev., vol. 9, no. 2, pp. 91-102, 2017.spa
dcterms.bibliographicCitationT. Sterling and J. J. Irwin, "ZINC 15 – Ligand Discovery for Everyone", J. Chem. Inf. Model., vol. 55, no. 11, pp. 2324-2337, Nov. 2015.spa
dcterms.bibliographicCitationD.-I. Liao, J. E. Thompson, S. Fahnestock, B. Valent and D. B. Jordan, "A Structural Account of Substrate and Inhibitor Specificity Differences between Two Naphthol Reductases", Biochemistry, vol. 40, no. 30, pp. 8696-8704, Jul. 2001.spa
dcterms.bibliographicCitationD.-I. Liao, J. E. Thompson, S. Fahnestock, B. Valent and D. B. Jordan, "Crystal structure of 1368-tetrahydroxynaphthalene reductase in complex with NADPH and pyroquilon", 2001.spa
dcterms.bibliographicCitationS. K. Burley et al., "RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology biomedicine biotechnology bioengineering and energy sciences", Nucleic Acids Res., vol. 49, no. D1, pp. D437-D451, Jan. 2021.spa
dcterms.bibliographicCitationM. S. Skrzypek, J. Binkley, G. Binkley, S. R. Miyasato, M. Simison and G. Sherlock, "The Candida Genome Database (CGD): incorporation of Assembly 22 systematic identifiers and visualization of high throughput sequencing data", Nucleic Acids Res., vol. 45, no. D1, pp. D592-D596, Jan. 2017.spa
dcterms.bibliographicCitationR. Apweiler et al., "UniProt: the Universal Protein knowledgebase", Nucleic Acids Res., vol. 32, no. suppl_1, pp. D115-D119, Jan. 2004.spa
dcterms.bibliographicCitationV. A. Simossis and J. Heringa, "PRALINE: a multiple sequence alignment toolbox that integrates homology-extended and secondary structure information", Nucleic Acids Res., vol. 33, no. suppl_2, pp. W289-W294, Jul. 2005.spa
dcterms.bibliographicCitationA. Waterhouse et al., "SWISS-MODEL: homology modelling of protein structures and complexes", Nucleic Acids Res., vol. 46, no. W1, pp. W296-W303, Jul. 2018.spa
dcterms.bibliographicCitationR. A. Laskowski, M. W. MacArthur and J. M. Thornton, "PROCHECK : validation of protein-structure coordinates", pp. 684-687, 2012spa
dcterms.bibliographicCitationD. Seeliger and B. L. de Groot, "Ligand docking and binding site analysis with PyMOL and Autodock/Vina", J. Comput. Aided. Mol. Des., vol. 24, no. 5, pp. 417-422, 2010.spa
dcterms.bibliographicCitationS. Kim et al., "PubChem in 2021: new data content and improved web interfaces", Nucleic Acids Res., vol. 49, no. D1, pp. D1388-D1395, Jan. 2021.spa
dcterms.bibliographicCitationM. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, "Avogadro: an advanced semantic chemical editor visualization and analysis platform", J. Cheminform., vol. 4, no. 1, pp. 17, 2012.spa
dcterms.bibliographicCitationE. F. Pettersen et al., "UCSF Chimera—A visualization system for exploratory research and analysis", J. Comput. Chem., vol. 25, no. 13, pp. 1605-1612, Oct. 2004.spa
dcterms.bibliographicCitationN. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch and G. R. Hutchison, "Open Babel: An open chemical toolbox", J. Cheminform., vol. 3, no. 1, pp. 33, 2011.spa
dcterms.bibliographicCitationE. Krieger et al., "Improving physical realism stereochemistry and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8", Proteins Struct. Funct. Bioinforma., vol. 77, no. S9, pp. 114-122, Jan. 2009.spa
dcterms.bibliographicCitationO. Trott and A. J. Olson, "AutoDock Vina: improving the speed and accuracy of docking with a new scoring function efficient optimization and multithreading", J. Comput. Chem., vol. 31, no. 2, pp. 455-61, Jan. 2010.spa
dcterms.bibliographicCitationS. Dallakyan and A. J. Olson, "Small-Molecule Library Screening by Docking with PyRx BT - Chemical Biology: Methods and Protocols" in , New York, NY:Springer New York, pp. 243-250, 2015.spa
dcterms.bibliographicCitationL. Design, "Pharmacophore and ligand-based design with Biovia Discovery Studio®", 2014.spa
dcterms.bibliographicCitationD. Kornitzer and U. Roy, "Pathways of heme utilization in fungi", Biochim. Biophys. Acta - Mol. Cell Res., vol. 1867, no. 11, pp. 118817, 2020spa
dcterms.bibliographicCitationA. Pérez, G. Ramage, R. Blanes, A. Murgui, M. Casanova and J. P. Martínez, "Some biological features of Candida albicans mutants for genes coding fungal proteins containing the CFEM domain", FEMS Yeast Res., vol. 11, no. 3, pp. 273-284, May 2011.spa
dcterms.bibliographicCitationA. Pérez, B. Pedrós, A. Murgui, M. Casanova, J. L. López-Ribot and J. P. Martínez, "Biofilm formation by Candida albicans mutants for genes coding fungal proteins exhibiting the eight-cysteine-containing CFEM domain", FEMS Yeast Res., vol. 6, no. 7, pp. 1074-1084, Nov. 2006.spa
dcterms.bibliographicCitationA. Pérez, B. Pedrós, A. Murgui, M. Casanova, J. L. López-Ribot and J. P. Martínez, "Biofilm formation by Candida albicans mutants for genes coding fungal proteins exhibiting the eight-cysteine-containing CFEM domain", FEMS Yeast Res., vol. 6, no. 7, pp. 1074-1084, Nov. 2006.spa
dcterms.bibliographicCitationW. Zhu et al., "BcCFEM1 a CFEM Domain-Containing Protein with Putative GPI-Anchored Site Is Involved in Pathogenicity Conidial Production and Stress Tolerance in Botrytis cinerea", Frontiers in Microbiology, vol. 8, pp. 1807, 2017.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1109/CI-IBBI54220.2021.9626093
dc.subject.keywordsBioinformaticsspa
dc.subject.keywordsCandidiasisspa
dc.subject.keywordsDrug treatmentspa
dc.subject.keywordsMolecular dockingspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.