Mostrar el registro sencillo del ítem
Stationary-state analysis of low-voltage DC grids
dc.contributor.author | Montoya, Oscar Danilo | |
dc.contributor.author | Gil-González, Walter | |
dc.date.accessioned | 2023-07-18T19:20:21Z | |
dc.date.available | 2023-07-18T19:20:21Z | |
dc.date.issued | 2021-01-01 | |
dc.date.submitted | 2023-07 | |
dc.identifier.citation | Montoya, O.D., Gil-González, W. Stationary-state analysis of low-voltage DC grids (2021) Modeling, Operation, and Analysis of DC Grids: From High Power DC Transmission to DC Microgrids, pp. 195-213. DOI: 10.1016/B978-0-12-822101-3.00013-7 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12116 | |
dc.description.abstract | The optimal power flow is a classic method for alternating current networks, which can also be applied to direct current networks. However, it is needed to design new methods that guarantee convergence and global optimum. Several approximations based on Taylor series expansion linearization, recursive approximations, and convex optimization can be developed. In this chapter, we theoretically and numerically analyze approximations such as successive linear approximations, Newton-Raphson approximation, hyperbolic approximation, semidefinite programming, and second-order cone optimization for solving optimal power flow problems in direct current networks. The emphasis of the chapter is on low-voltage direct current grids (i.e., DC microgrids and DC distribution), but the ideas can be easily extended to high-power applications. | spa |
dc.format.extent | 18 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Modeling, Operation, and Analysis of DC Grids: From High Power DC Transmission to DC Microgrids | spa |
dc.title | Stationary-state analysis of low-voltage DC grids | spa |
dcterms.bibliographicCitation | Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S. State of the art in research on microgrids: A review (2015) IEEE Access, 3, art. no. 07120901, pp. 890-925. Cited 759 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2015.2443119 | spa |
dcterms.bibliographicCitation | Li, J., Liu, F., Wang, Z., Low, S.H., Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8279503, pp. 5496-5506. Cited 113 times. doi: 10.1109/TPWRS.2018.2801280 | spa |
dcterms.bibliographicCitation | Montoya Giraldo, O.D. On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (12), art. no. 8620316, pp. 2032-2036. Cited 28 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2894149 | spa |
dcterms.bibliographicCitation | Jin, C., Wang, P., Xiao, J., Tang, Y., Choo, F.H. Implementation of hierarchical control in DC microgrids (2014) IEEE Transactions on Industrial Electronics, 61 (8), art. no. 6642055, pp. 4032-4042. Cited 295 times. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5410131 doi: 10.1109/TIE.2013.2286563 | spa |
dcterms.bibliographicCitation | Rouzbehi, K., Candela, J.I., Gharehpetian, G.B., Harnefors, L., Luna, A., Rodriguez, P. Multiterminal DC grids: Operating analogies to AC power systems (2017) Renewable and Sustainable Energy Reviews, 70, pp. 886-895. Cited 45 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2016.11.270 | spa |
dcterms.bibliographicCitation | Stott, B., Jardim, J., Alsaç, O. DC power flow revisited (2009) IEEE Transactions on Power Systems, 24 (3), pp. 1290-1300. Cited 733 times. doi: 10.1109/TPWRS.2009.2021235 | spa |
dcterms.bibliographicCitation | Montoya, O.D., Gil-González, W., Garces, A. Sequential quadratic programming models for solving the OPF problem in DC grids (Open Access) (2019) Electric Power Systems Research, 169, pp. 18-23. Cited 39 times. doi: 10.1016/j.epsr.2018.12.008 | spa |
dcterms.bibliographicCitation | Garcés, A., Montoya, O.-D. A Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithms (2019) Journal of Control, Automation and Electrical Systems, 30 (5), pp. 794-801. Cited 16 times. http://rd.springer.com/journal/40313 doi: 10.1007/s40313-019-00489-4 | spa |
dcterms.bibliographicCitation | Garces, A. On the convergence of Newton's method in power flow studies for dc microgrids (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8327530, pp. 5770-5777. Cited 119 times. doi: 10.1109/TPWRS.2018.2820430 | spa |
dcterms.bibliographicCitation | Garces, A. A Linear Three-Phase Load Flow for Power Distribution Systems (2016) IEEE Transactions on Power Systems, 31 (1), art. no. 7027253, pp. 827-828. Cited 213 times. doi: 10.1109/TPWRS.2015.2394296 | spa |
dcterms.bibliographicCitation | Montoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Garces, A. Linear power flow formulation for low-voltage DC power grids (Open Access) (2018) Electric Power Systems Research, Part A 163, pp. 375-381. Cited 79 times. doi: 10.1016/j.epsr.2018.07.003 | spa |
dcterms.bibliographicCitation | Montoya, O.D., Garrido, V.M., Gil-Gonzalez, W., Grisales-Norena, L.F. Power Flow Analysis in DC Grids: Two Alternative Numerical Methods (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (11), art. no. 8606244, pp. 1865-1869. Cited 59 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2891640 | spa |
dcterms.bibliographicCitation | Montoya, O.D., Gil-Gonzalez, W., Garces, A. Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (6), art. no. 8469013, pp. 1018-1022. Cited 48 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2018.2871432 | spa |
dcterms.bibliographicCitation | Montoya, O.D. A convex OPF approximation for selecting the best candidate nodes for optimal location of power sources on DC resistive networks (2019) Engineering Science and Technology, an International Journal. Cited 2 times. | spa |
dcterms.bibliographicCitation | Luo, Z.-Q., Ma, W.-K., So, A., Ye, Y., Zhang, S. Semidefinite relaxation of quadratic optimization problems (Open Access) (2010) IEEE Signal Processing Magazine, 27 (3), art. no. 5447068, pp. 20-34. Cited 2311 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=79&year=2008 doi: 10.1109/MSP.2010.936019 | spa |
dcterms.bibliographicCitation | Garcés, A. Convex optimization for the optimal power flow on DC distribution systems (2020) Handbook of Optimization in Electric Power Distribution Systems, pp. 121-137. Cited 7 times. Springer | spa |
dcterms.bibliographicCitation | Grant, M., Boyd, S. (2014) CVX: Matlab software for disciplined convex programming, version 2.1. Cited 8324 times. http://cvxr.com/cvx | spa |
dcterms.bibliographicCitation | Gil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (Open Access) (2019) Journal of Energy Storage, 21, pp. 1-8. Cited 90 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2018.10.025 | spa |
dcterms.bibliographicCitation | Hindi, H. A tutorial on convex optimization (2004) Proceedings of the American Control Conference, 4, pp. 3252-3265. Cited 60 times. doi: 10.23919/acc.2004.1384411 | spa |
dcterms.bibliographicCitation | Alizadeh, F., Goldfarb, D. Second-order cone programming (Open Access) (2003) Mathematical Programming, Series B, 95 (1), pp. 3-51. Cited 1091 times. doi: 10.1007/s10107-002-0339-5 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | 10.1016/B978-0-12-822101-3.00013-7 | |
dc.subject.keywords | Linear successive approximations | spa |
dc.subject.keywords | Newton-Raphson formulation | spa |
dc.subject.keywords | Optimal power flow in direct current networks | spa |
dc.subject.keywords | Second-order cone programming model | spa |
dc.subject.keywords | Semidefinite programming model | spa |
dc.subject.keywords | Taylor-based methods | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.