Mostrar el registro sencillo del ítem

dc.contributor.authorBarrios, Erik
dc.contributor.authorPineda, Jesus
dc.contributor.authorRomero, Lenny A
dc.contributor.authorMillán, María S
dc.contributor.authorMarrugo, Andrés G.
dc.date.accessioned2023-07-18T19:17:34Z
dc.date.available2023-07-18T19:17:34Z
dc.date.issued2021-09-02
dc.date.submitted2023-07
dc.identifier.citationBarrios, E., Pineda, J., Romero, L.A., Millán, M.S., Marrugo, A.G. Skin color correction via convolutional neural networks in 3D fringe projection profilometry (2021) Proceedings of SPIE - The International Society for Optical Engineering, 11804, art. no. 118041P, . DOI: 10.1117/12.2594331spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12114
dc.description.abstractFringe Projection Profilometry (FPP) with Digital Light Projector technology is one of the most reliable 3D sensing techniques for biomedical applications. However, besides the fringe pattern images,often a color texture image is needed for an accurate medical documentation. This image may be acquired either by projecting a white image or a black image and relying on ambient light. Color Constancy is essential for a faithful digital record, although the optical properties of biological tissue make color reproducibility challenging. Furthermore, color perception is highly dependent on the illuminant. Here, we describe a deep learning-based method for skin color correction in FPP. We trained a convolutional neural network using a skin tone color palette acquired under different illumination conditions to learn the mapping relationship between the input color image and its counterpart in the sRGB color space. Preliminary experimental results demonstrate the potential for this approach.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceProceedings of SPIE - The International Society for Optical Engineering - Vol. 11804 (2021)spa
dc.titleSkin color correction via convolutional neural networks in 3D fringe projection profilometryspa
dcterms.bibliographicCitationMarrugo, A.G., Gao, F., Zhang, S. State-of-the-art active optical techniques for three-dimensional surface metrology: a review [Invited] (2020) Journal of the Optical Society of America A: Optics and Image Science, and Vision, 37 (9), pp. B60-B77. Cited 102 times. https://www.osapublishing.org/abstract.cfm?URI=josaa-37-9-B60 doi: 10.1364/JOSAA.398644spa
dcterms.bibliographicCitationMeza, J., Contreras-Ortiz, S.H., Romero, L.A., Marrugo, A.G. Three-dimensional multimodal medical imaging system based on freehand ultrasound and structured light (2021) Optical Engineering, 60 (5), art. no. 054106. Cited 7 times. http://www.spie.org/x867.xml doi: 10.1117/1.OE.60.5.054106spa
dcterms.bibliographicCitationLaloš, J., Mrak, M., Pavlovčič, U., Jezeršek, M. Handheld optical system for skin topography measurement using fourier transform profilometry (2015) Strojniski Vestnik/Journal of Mechanical Engineering, 61 (5), pp. 285-291. Cited 4 times. http://en.sv-jme.eu/data/upload/2015/05/01_2015_2424_Lalos_04.pdf doi: 10.5545/sv-jme.2015.2424spa
dcterms.bibliographicCitationPineda, J., Vargas, R., Romero, L.A., Marrugo, J., Meneses, J., Marrugo, A.G. Robust automated reading of the skin prick test via 3D imaging and parametric surface fitting (2019) PLoS ONE, 14 (10), art. no. e0223623. Cited 7 times. https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0223623&type=printable doi: 10.1371/journal.pone.0223623spa
dcterms.bibliographicCitationRey-Barroso, L., Burgos-Fernández, F.J., Ares, M., Royo, S., Puig, S., Malvehy, J., Pellacani, G., (...), Ricart, M.V. Morphological study of skin cancer lesions through a 3D scanner based on fringe projection and machine learning (2019) Biomedical Optics Express, 10 (7), pp. 3404-3409. Cited 6 times. https://www.osapublishing.org/boe/viewmedia.cfm?uri=boe-10-7-3404&seq=0 doi: 10.1364/BOE.10.003404spa
dcterms.bibliographicCitationXu, J., Zhang, S. Status, challenges, and future perspectives of fringe projection profilometry (2020) Optics and Lasers in Engineering, 135, art. no. 106193. Cited 121 times. https://www.journals.elsevier.com/optics-and-lasers-in-engineering doi: 10.1016/j.optlaseng.2020.106193spa
dcterms.bibliographicCitationWannous, H., Treuillet, S., Lucas, Y. Robust tissue classification for reproducible wound assessment in telemedicine environments (2010) Journal of Electronic Imaging, 19 (2), art. no. 023002. Cited 43 times. doi: 10.1117/1.3378149spa
dcterms.bibliographicCitationWannous, H., Lucas, Y., Treuillet, S., Mansouri, A., Voisin, Y. Improving color correction across camera and illumination changes by contextual sample selection (2012) Journal of Electronic Imaging, 21 (2), art. no. 023015. Cited 23 times. http://www.spie.org/x868.xml doi: 10.1117/1.JEI.21.2.023015spa
dcterms.bibliographicCitationTanaka, S., Kakinuma, A., Kamijo, N., Takahashi, H., Tsumura, N. Auto white balance method using a pigmentation separation technique for human skin color (Open Access) (2017) Optical Review, 24 (1), pp. 17-26. Cited 3 times. http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-40109-70-1126859-0,00.html doi: 10.1007/s10043-016-0290-yspa
dcterms.bibliographicCitationCorbalán, M., Millán, M.S., Yzuel, M.J. Color measurement in standard CIELAB coordinates using a 3CCD camera: correction for the influence of the light source (2000) Optical Engineering, 39 (6), pp. 1470-1476. Cited 30 times. doi: 10.1117/1.602519spa
dcterms.bibliographicCitationMahmoud, A. (2018) Semantic white balance: Semantic color constancy using convolutional neural network. Cited 15 times. arXiv preprint arXiv:1802.00153spa
dcterms.bibliographicCitationLou, Z., Gevers, T., Hu, N., Lucassen, M. P. Color constancy by deep learning (2015) , pp. 76-1. Cited 67 times. [BMVC]spa
dcterms.bibliographicCitationQian, Y. (2020) Computational color constancy: From pixel to video with a stop at convolutional neural networkspa
dcterms.bibliographicCitationBuchsbaum, G. A spatial processor model for object colour perception (Open Access) (1980) Journal of the Franklin Institute, 310 (1), pp. 1-26. Cited 1251 times. doi: 10.1016/0016-0032(80)90058-7spa
dcterms.bibliographicCitationVaezi Joze, H.R., Drew, M.S. White patch gamut mapping colour constancy (Open Access) (2012) Proceedings - International Conference on Image Processing, ICIP, art. no. 6466981, pp. 801-804. Cited 15 times. ISBN: 978-146732533-2 doi: 10.1109/ICIP.2012.6466981spa
dcterms.bibliographicCitationChoi, H.-H., Yun, B.-J. Deep learning-based computational color constancy with convoluted mixture of deep experts (CMODe) fusion technique (2020) IEEE Access, 8, pp. 188309-188320. Cited 10 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2020.3030912spa
dcterms.bibliographicCitationOh, S.W., Kim, S.J. Approaching the computational color constancy as a classification problem through deep learning (2017) Pattern Recognition, 61, pp. 405-416. Cited 75 times. www.elsevier.com/inca/publications/store/3/2/8/ doi: 10.1016/j.patcog.2016.08.013spa
dcterms.bibliographicCitationHu, Y., Wang, B., Lin, S. FC4: Fully convolutional color constancy with confidence-weighted pooling (Open Access) (2017) Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January, pp. 330-339. Cited 151 times. ISBN: 978-153860457-1 doi: 10.1109/CVPR.2017.43spa
dcterms.bibliographicCitationCooksey, C.C., Allen, D.W., Tsai, B.K. Reference data set of human skin reflectance (Open Access) (2017) Journal of Research of the National Institute of Standards and Technology, 122, art. no. 26. Cited 15 times. https://nvlpubs.nist.gov/nistpubs/jres/122/jres.122.026.pdf doi: 10.6028/jres.122.026spa
dcterms.bibliographicCitationCooksey, C., Allen, D., Tsai, B. Reectance data set and variability study for human skin reectance (2019) Proceedings of the CIE 2019 29th Session Washington, DC (2019-07-01)spa
dcterms.bibliographicCitationMcCamy, C.S., Marcus, H., Davidson, J.G. COLOR-RENDITION CHART. (Open Access) (1976) J Appl Photogr Eng, 2 (3), pp. 95-99. Cited 382 times.spa
dcterms.bibliographicCitationKingma, D. P., Ba, J. (2014) Adam: A method for stochastic optimization. Cited 51871 times. arXiv preprint arXiv:1412.6980spa
dcterms.bibliographicCitationHelgadottir, S., Argun, A., Volpe, G. Digital video microscopy enhanced by deep learning (Open Access) (2019) Optica, 6 (4), pp. 506-513. Cited 42 times. https://www.osapublishing.org/optica/viewmedia.cfm?uri=optica-6-4-506&seq=0 doi: 10.1364/OPTICA.6.000506spa
dcterms.bibliographicCitationMidtvedt, B., Helgadottir, S., Argun, A., Midtvedt, D., Volpe, G. (2020) Deeptrack: A comprehensive deep learning framework for digital microscopy. Cited 2 times. https://github.com/softmatterlab/DeepTrack-2.0.gitspa
dcterms.bibliographicCitationGaurav, S. (2003) Digital color imaging handbook. Cited 660 times. CRC Pressspa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1117/12.2594331
dc.subject.keywordsColor constancyspa
dc.subject.keywordsConvolutional neural networkspa
dc.subject.keywordsImage color processingspa
dc.subject.keywordsMachine learningspa
dc.subject.keywordsSkin color correctionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.