Mostrar el registro sencillo del ítem

dc.contributor.authorRamos, Helena M.
dc.contributor.authorKuriqi, Alban
dc.contributor.authorBesharat, Mohsen
dc.contributor.authorCreaco, Enrico
dc.contributor.authorTasca, Elias
dc.contributor.authorCoronado-Hernández, Oscar E.
dc.contributor.authorPienika, Rodolfo
dc.contributor.authorIglesias-Rey, Pedro
dc.date.accessioned2023-07-18T19:12:58Z
dc.date.available2023-07-18T19:12:58Z
dc.date.issued2023-03-15
dc.date.submitted2023-07
dc.identifier.citationRamos, H.M.; Kuriqi, A.; Besharat, M.; Creaco, E.; Tasca, E.; Coronado-Hernández, O.E.; Pienika, R.; Iglesias-Rey, P. Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks. Water 2023, 15, 1129. https://doi.org/10.3390/w15061129spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12109
dc.description.abstractOne of the main factors contributing to water scarcity is water loss in water distribution systems, which mainly arises from a lack of adequate knowledge in the design process, optimization of water availability, and poor maintenance/management of the system. Thus, from the perspective of sustainable and integrated management of water resources, it is essential to enhance system efficiency by monitoring existing system elements and enhancing network maintenance/management practices. The current study establishes a smart water grid (SWG) with a digital twin (DT) for a water infrastructure to improve monitoring, management, and system efficiency. Such a tool allows live monitoring of system components, which can analyze different scenarios and variables, such as pressures, operating devices, regulation of different valves, and head-loss factors. The current study explores a case study in which local constraints amplify significant water losses. It develops and examines the DT model’s application in the Gaula water distribution network (WDN) in Madeira Island, Portugal. The developed methodology resulted in a significant potential reduction in real water losses, which presented a huge value of 434,273 m3 (~80%) and significantly improved system efficiency. The result shows a meaningful economic benefit, with savings of about EUR 165k in water loss volume with limiting pressures above the regulatory maximum of 60 m w.c. after the district metered area (DMA) sectorization and the requalification of the network. Hence, only 40% of the total annual volume, concerning the status quo situation, is necessary to supply the demand. The infrastructure leakage index measures the existing real losses and the reduction potential, reaching a value of 21.15, much higher than the recommended value of 4, revealing the great potential for improving the system efficiency using the proposed methodology.spa
dc.format.extent22 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceWater (Switzerland) - Vol. 15 No 6 (2023)spa
dc.titleSmart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networksspa
dcterms.bibliographicCitationGiustolisi, O., Savic, D., Kapelan, Z. Pressure-driven demand and leakage simulation for water distribution networks (2008) Journal of Hydraulic Engineering, 134 (5), pp. 626-635. Cited 311 times. doi: 10.1061/(ASCE)0733-9429(2008)134:5(626)spa
dcterms.bibliographicCitationAL-Washali, T., Sharma, S., Kennedy, M. Methods of Assessment of Water Losses in Water Supply Systems: a Review (2016) Water Resources Management, 30 (14), pp. 4985-5001. Cited 50 times. www.wkap.nl/journalhome.htm/0920-4741 doi: 10.1007/s11269-016-1503-7spa
dcterms.bibliographicCitationHommes, L., Boelens, R. Urbanizing rural waters: Rural-urban water transfers and the reconfiguration of hydrosocial territories in Lima (2017) Political Geography, 57, pp. 71-80. Cited 91 times. http://www.elsevier.com/inca/publications/store/3/0/4/6/5/index.htt doi: 10.1016/j.polgeo.2016.12.002spa
dcterms.bibliographicCitationIshiwatari, Y., Mishima, I., Utsuno, N., Fujita, M. Diagnosis of the ageing of water pipe systems by water quality and structure of iron corrosion in supplied water (2013) Water Science and Technology: Water Supply, 13 (1), pp. 178-183. Cited 8 times. http://www.iwaponline.com/ws/01301/0178/013010178.pdf doi: 10.2166/ws.2013.006spa
dcterms.bibliographicCitationRokstad, M.M., Ugarelli, R.M. Minimising the total cost of renewal and risk of water infrastructure assets by grouping renewal interventions (2015) Reliability Engineering and System Safety, 142, pp. 148-160. Cited 21 times. doi: 10.1016/j.ress.2015.05.014spa
dcterms.bibliographicCitationOciepa, E., Mrowiec, M., Deska, I. Analysis of water losses and assessment of initiatives aimed at their reduction in selected water supply systems (2019) Water (Switzerland), 11 (5), art. no. 1037. Cited 25 times. https://res.mdpi.com/water/water-11-01037/article_deploy/water-11-01037.pdf?filename=&attachment=1 doi: 10.3390/w11051037spa
dcterms.bibliographicCitationLambert, A.O., Brown, T.G., Takizawa, M., Weimer, D. A review of performance indicators for real losses from water supply systems (1999) Journal of Water Supply: Research and Technology - AQUA, 48 (6), pp. 227-237. Cited 158 times. http://www.iwaponline.com/jws/default.htm doi: 10.2166/aqua.1999.0025spa
dcterms.bibliographicCitationAbansi, C.L., Hall, R.A., Siason, I.M.L. Water demand management and improving access to water (Open Access) (2018) Global Issues in Water Policy, 8, pp. 233-259. Cited 3 times. springer.com/series/8877 doi: 10.1007/978-3-319-70969-7_11spa
dcterms.bibliographicCitationRamos, H.M., Morani, M.C., Carravetta, A., Fecarrotta, O., Adeyeye, K., López-Jiménez, P.A., Pérez-Sánchez, M. New Challenges towards Smart Systems’ Efficiency by Digital Twin in Water Distribution Networks (2022) Water (Switzerland), 14 (8), art. no. 1304. Cited 11 times. https://www.mdpi.com/2073-4441/14/8/1304/pdf doi: 10.3390/w14081304spa
dcterms.bibliographicCitationArregui, F.J., Cobacho, R., Soriano, J., Jimenez-Redal, R. Calculation proposal for the economic level of apparent losses (ELAL) in a water supply system (Open Access) (2018) Water (Switzerland), 10 (12), art. no. 1809. Cited 13 times. https://www.mdpi.com/2073-4441/10/12/1809/pdf doi: 10.3390/w10121809spa
dcterms.bibliographicCitationFabbiano, L., Vacca, G., Dinardo, G. Smart water grid: A smart methodology to detect leaks in water distribution networks (Open Access) (2020) Measurement: Journal of the International Measurement Confederation, 151, art. no. 107260. Cited 22 times. https://www.journals.elsevier.com/measurement doi: 10.1016/j.measurement.2019.107260spa
dcterms.bibliographicCitationRamos, H.M., McNabola, A., López-Jiménez, P.A., Pérez-Sánchez, M. Smart water management towards future water sustainable networks (Open Access) (2020) Water (Switzerland), 12 (1), art. no. 58. Cited 58 times. https://res.mdpi.com/d_attachment/water/water-12-00058/article_deploy/water-12-00058.pdf doi: 10.3390/w12010058spa
dcterms.bibliographicCitationAlzamora, F.M., Carot, M.H., Carles, J., Campos, A. Development and Use of a Digital Twin for the Water Supply and Distribution Network of Valencia (Spain) Proceedings of the 17th International Computing & Control for the Water Industry Conference. Cited 2 times. Exeter, UK, 1–4 September 2019spa
dcterms.bibliographicCitationGermanopoulos, G., Jowitt, P.W. Leakage reduction by excess pressure minimization in a water supply network (Open Access) (1989) Proceedings - Institution of Civil Engineers. Part 2. Research and theory, 87, pp. 195-214. Cited 91 times.spa
dcterms.bibliographicCitationGaldiero, E., De Paola, F., Fontana, N., Giugni, M., Savic, D. Decision support system for the optimal design of district metered areas (2016) Journal of Hydroinformatics, 18 (1), pp. 49-61. Cited 39 times. http://jh.iwaponline.com/content/ppiwajhydro/18/1/49.full.pdf doi: 10.2166/hydro.2015.023spa
dcterms.bibliographicCitationCurl, J.M., Nading, T., Hegger, K., Barhoumi, A., Smoczynski, M. Digital Twins: The Next Generation of Water Treatment Technology (Open Access) (2019) Journal - American Water Works Association, 111 (12), pp. 44-50. Cited 18 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1551-8833 doi: 10.1002/awwa.1413spa
dcterms.bibliographicCitationConejos Fuertes, P., Martínez Alzamora, F., Hervás Carot, M., Alonso Campos, J.C. Building and exploiting a Digital Twin for the management of drinking water distribution networks (Open Access) (2020) Urban Water Journal, 17 (8), pp. 704-713. Cited 57 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2020.1771382spa
dcterms.bibliographicCitationEggimann, S., Mutzner, L., Wani, O., Schneider, M.Y., Spuhler, D., Moy De Vitry, M., Beutler, P., (...), Maurer, M. The Potential of Knowing More: A Review of Data-Driven Urban Water Management (Open Access) (2017) Environmental Science and Technology, 51 (5), pp. 2538-2553. Cited 145 times. http://pubs.acs.org/journal/esthag doi: 10.1021/acs.est.6b04267spa
dcterms.bibliographicCitationMekonnen, M.M., Hoekstra, A.Y. Sustainability: Four billion people facing severe water scarcity (2016) Science Advances, 2 (2), art. no. e1500323. Cited 2481 times. http://advances.sciencemag.org/content/advances/2/2/e1500323.full.pdf doi: 10.1126/sciadv.1500323spa
dcterms.bibliographicCitationBauer, P., Stevens, B., Hazeleger, W. A digital twin of Earth for the green transition (2021) Nature Climate Change, 11 (2), pp. 80-83. Cited 98 times. http://www.nature.com/nclimate/index.html doi: 10.1038/s41558-021-00986-yspa
dcterms.bibliographicCitationXiang, X., Li, Q., Khan, S., Khalaf, O.I. Urban water resource management for sustainable environment planning using artificial intelligence techniques (Open Access) (2021) Environmental Impact Assessment Review, 86, art. no. 106515. Cited 163 times. www.elsevier.com/inca/publications/store/5/0/5/7/1/8 doi: 10.1016/j.eiar.2020.106515spa
dcterms.bibliographicCitationManny, L. Socio-technical challenges towards data-driven and integrated urban water management: A socio-technical network approach (2023) Sustainable Cities and Society, 90, art. no. 104360. Cited 4 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724360/description#description doi: 10.1016/j.scs.2022.104360spa
dcterms.bibliographicCitationAvailable online https://apambiente.pt/agua/plano-estrategico-de-abastecimento-de-agua-e-saneamento-de-aguas-residuais-2020spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.3390/w15061129
dc.subject.keywordsDigital twinspa
dc.subject.keywordsDigital waterspa
dc.subject.keywordsSmart water gridsspa
dc.subject.keywordsWater lossesspa
dc.subject.keywordsWater-energy nexusspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.