Mostrar el registro sencillo del ítem
A Recommender System for Digital Newspaper Readers Based on Random Forest
dc.contributor.author | Delahoz-Dominguez, Enrique | |
dc.contributor.author | Zuluaga Ortiz, Rohemi Alfredo | |
dc.contributor.author | Mendoza-Mendoza, Adel | |
dc.contributor.author | Escorcia, Jey | |
dc.contributor.author | Moreira-Villegas, Francisco | |
dc.contributor.author | Oliveros-Eusse, Pedro | |
dc.date.accessioned | 2023-07-14T13:53:26Z | |
dc.date.available | 2023-07-14T13:53:26Z | |
dc.date.issued | 2022 | |
dc.date.submitted | 2023 | |
dc.identifier.citation | Delahoz-Dominguez, E., Zuluaga-Ortiz, R., Mendoza-Mendoza, A., Escorcia, J., Moreira-Villegas, F., & Oliveros-Eusse, P. (2022). A recommender system for digital newspaper readers based on random forest. En Computer Information Systems and Industrial Management (pp. 191–201). Springer International Publishing. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12106 | |
dc.description.abstract | In this research, the potential of machine learning methods based on decision trees (DT) and Random Forest (RF) models developed in the context of classifying readers of a digital newspaper. For this purpose, the number of visits of users to each section of the newspaper in a 3-month interval has been taken into account. The models of DT and RF developed in this paper classify the profiles of readers who access the journal with an accuracy of 98.07% and AUC value of 99.27%, thus demonstrating that it serves as a valid tool for making strategic and operational decisions when creating, manage and present content in the user – website interaction. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG. | spa |
dc.format.extent | 10 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Computer Information Systems and Industrial Management (pp. 191–201). Springer International Publishing. | spa |
dc.title | A Recommender System for Digital Newspaper Readers Based on Random Forest | spa |
dcterms.bibliographicCitation | El Naqa, I., Murphy, M.J. What is machine learning? (2015) Machine Learning in Radiation Oncology, pp. 3-11. Cited 319 times. El Naqa, I., Li, R., Murphy, M.J. (eds.), Springer, Cham https://doi.org/10.1007/978-3-319-18305-3_1 | spa |
dcterms.bibliographicCitation | Hoz, E.D.L., Zuluaga, R., Mendoza, A. Assessing and classification of academic efficiency in engineering teaching programs (2021) Journal on Efficiency and Responsibility in Education and Science, 14 (1), pp. 41-52. Cited 13 times. https://www.eriesjournal.com/index.php/eries/article/view/375 doi: 10.7160/ERIESJ.2021.140104 | spa |
dcterms.bibliographicCitation | Escorcia Guzman, J.H., Zuluaga-Ortiz, R.A., Barrios-Miranda, D.A., Delahoz-Dominguez, E.J. Information and Communication Technologies (ICT) in the processes of distribution and use of knowledge in Higher Education Institutions (HEIs) (2021) Procedia Computer Science, 198, pp. 644-649. Cited 6 times. http://www.sciencedirect.com/science/journal/18770509 doi: 10.1016/j.procs.2021.12.300 | spa |
dcterms.bibliographicCitation | Suthaharan, S. Big data classification: Problems and challenges in network intrusion prediction with machine learning (2014) Performance Evaluation Review, 41 (4), pp. 70-73. Cited 273 times. http://portal.acm.org/browse_dl.cfm?linked=1&part=newsletter&idx=J618&coll=portal&dl=ACM&CFID=57809500&CFTOKEN=27978298 doi: 10.1145/2627534.2627557 | spa |
dcterms.bibliographicCitation | Nayak, A., Dutta, K. Impacts of machine learning and artificial intelligence on mankind (2018) Proceedings of 2017 International Conference on Intelligent Computing and Control, I2C2 2017, 2018-January, pp. 1-3. Cited 27 times. ISBN: 978-153860374-1 doi: 10.1109/I2C2.2017.8321908 | spa |
dcterms.bibliographicCitation | Obermeyer, Z., Emanuel, E.J. Predicting the future-big data, machine learning, and clinical medicine (2016) New England Journal of Medicine, 375 (13), pp. 1216-1219. Cited 1519 times. http://www.nejm.org/doi/pdf/10.1056/NEJMp1606181 doi: 10.1056/NEJMp1606181 | spa |
dcterms.bibliographicCitation | Yu, Q., Miche, Y., Séverin, E., Lendasse, A. Bankruptcy prediction using Extreme Learning Machine and financial expertise (2014) Neurocomputing, 128, pp. 296-302. Cited 100 times. doi: 10.1016/j.neucom.2013.01.063 | spa |
dcterms.bibliographicCitation | Mahdavinejad, M.S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., Sheth, A.P. Machine learning for internet of things data analysis: a survey (2018) Digital Communications and Networks, 4 (3), pp. 161-175. Cited 602 times. https://www.journals.elsevier.com/digital-communications-and-networks doi: 10.1016/j.dcan.2017.10.002 | spa |
dcterms.bibliographicCitation | De La Hoz, E.J., De La Hoz, E.J., Fontalvo, T.J. Methodology of Machine Learning for the classification and Prediction of users in Virtual Education Environments (2019) Informacion Tecnologica, 30 (1), pp. 247-254. Cited 23 times. https://scielo.conicyt.cl/pdf/infotec/v30n1/0718-0764-infotec-30-01-247.pdf doi: 10.4067/S0718-07642019000100247 | spa |
dcterms.bibliographicCitation | Delahoz-Dominguez, E.J., Fontalvo, T., Zuluaga, R. Evaluation of academic productivity of citizen competencies in the teaching of engineering by using the Malmquist index (Open Access) (2020) Formacion Universitaria, 13 (5), pp. 27-34. Cited 5 times. http://www.scielo.cl/scielo.php?script=sci_serial&pid=0718-5006&lng=en&nrm=iso doi: 10.4067/S0718-50062020000500027 | spa |
dcterms.bibliographicCitation | Delahoz-Dominguez, E., Zuluaga, R., Fontalvo-Herrera, T. Dataset of academic performance evolution for engineering students (Open Access) (2020) Data in Brief, 30, art. no. 105537. Cited 17 times. https://www.journals.elsevier.com/data-in-brief doi: 10.1016/j.dib.2020.105537 | spa |
dcterms.bibliographicCitation | Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction (2015) Computational and Structural Biotechnology Journal, 13, pp. 8-17. Cited 1652 times. www.csbj.org doi: 10.1016/j.csbj.2014.11.005 | spa |
dcterms.bibliographicCitation | Erevelles, S., Fukawa, N., Swayne, L. Big Data consumer analytics and the transformation of marketing (Open Access) (2016) Journal of Business Research, 69 (2), pp. 897-904. Cited 717 times. http://www.elsevier.com/locate/jbusres doi: 10.1016/j.jbusres.2015.07.001 | spa |
dcterms.bibliographicCitation | Stalidis, G., Karapistolis, D., Vafeiadis, A. Marketing decision support using artificial intelligence and knowledge modeling: Application to tourist destination management (2015) Procedia Soc. Behav. Sci., 175, pp. 106-113. Cited 38 times. | spa |
dcterms.bibliographicCitation | Sundsøy, P., Bjelland, J., Iqbal, A.M., Pentland, A., De Montjoye, Y.-A. Big data-driven marketing: How machine learning outperforms marketers' gut-feeling (Open Access) (2014) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8393 LNCS, pp. 367-374. Cited 29 times. http://springerlink.com/content/0302-9743/copyright/2005/ ISBN: 978-331905578-7 doi: 10.1007/978-3-319-05579-4_45 | spa |
dcterms.bibliographicCitation | F.Y, O., J.E.T, A., O, A., J.O, H., O, O., J, A. Supervised machine learning algorithms: Classification and comparison (2017) Int. J. Comput. Trends Technol., 48 (3), pp. 128-138. Cited 316 times. | spa |
dcterms.bibliographicCitation | Allcott, H., Gentzkow, M. Social media and fake news in the 2016 election (2017) Journal of Economic Perspectives, 31 (2), pp. 211-236. Cited 2715 times. http://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.31.2.211 doi: 10.1257/jep.31.2.211 | spa |
dcterms.bibliographicCitation | Adgate, B. Newspapers have Been Struggling and then Came the Pandemic. Cited 2 times. https://www.forbes.com/sites/bradadgate/2021/08/20/newspapers-have-been-struggling-and-then-camethe-pandemic/ | spa |
dcterms.bibliographicCitation | Digital Transformation through Data for News and Media Companies http://www2.deloitte.com/us/en/pages/consulting/articles/digital-transformation-through-data-fornews.html | spa |
dcterms.bibliographicCitation | de La Hoz Domínguez, E., Mendoza Mendoza, A., Ojeda De La Hoz, H. Classification of readers profiles of a digital journal (2017) Rev. UDCA Actual. Amp Divulg. Científica., 20, pp. 469-478. Cited 4 times. | spa |
dcterms.bibliographicCitation | Ahn, J., Jung, Y. The common sense of dependence on smartphone: A comparison between digital natives and digital immigrants (2016) New Media and Society, 18 (7), pp. 1236-1256. Cited 64 times. doi: 10.1177/1461444814554902 | spa |
dcterms.bibliographicCitation | Hernández, D.H., Ramírez-Martinell, A., Cassany, D. Categorizando a los usuarios de sistemas digitales (2014) Pixel-Bit Rev. Medios Educ.. Cited 13 times. https://doi.org/10.12795/pixelbit.2014.i44.08 | spa |
dcterms.bibliographicCitation | Therneau, T., Atkinson, B., Ripley, B. rpart: Recursive partitioning and regression trees (Version R package version 4.1-10). URL HttpsCRAN R-Proj (2015) Orgpackage Rpart | spa |
dcterms.bibliographicCitation | Esposito, F., Malerba, D., Semeraro, G. A comparative analysis of methods for pruning decision trees (Open Access) (1997) IEEE Transactions on Pattern Analysis and Machine Intelligence, 19 (5), pp. 476-491. Cited 409 times. doi: 10.1109/34.589207 | spa |
dcterms.bibliographicCitation | IBM: Pruning Decision Tress https://prod.ibmdocs-production-dal-6099123ce774e592a519d7c33db8265e-0000.us-south.containers.appdomain.cloud/docs/en/db2/10.5?topic=view-pruning-decision-trees | spa |
dcterms.bibliographicCitation | Petkovic, D., Altman, R., Wong, M., Vigil, A. Improving the explainability of Random Forest classifier – User centered approach (Open Access) (2018) Pacific Symposium on Biocomputing, 0, pp. 204-215. Cited 47 times. http://psb.stanford.edu/ doi: 10.1142/9789813235533_0019 | spa |
dcterms.bibliographicCitation | Breiman, L. Random forests (Open Access) (2001) Machine Learning, 45 (1), pp. 5-32. Cited 69880 times. doi: 10.1023/A:1010933404324 | spa |
dcterms.bibliographicCitation | Biau, G. Analysis of a random forests model (2012) Journal of Machine Learning Research, 13, pp. 1063-1095. Cited 869 times. http://jmlr.csail.mit.edu/papers/volume13/biau12a/biau12a.pdf | spa |
dcterms.bibliographicCitation | Araújo, F.H.D., Santana, A.M., de A. Santos Neto, P. Using machine learning to support healthcare professionals in making preauthorisation decisions (Open Access) (2016) International Journal of Medical Informatics, 94, pp. 1-7. Cited 38 times. www.elsevier.com/inca/publications/store/5/0/6/0/4/0/ doi: 10.1016/j.ijmedinf.2016.06.007 | spa |
dcterms.bibliographicCitation | Faraggi, D., Reiser, B. Estimation of the area under the ROC curve (Open Access) (2002) Statistics in Medicine, 21 (20), pp. 3093-3106. Cited 311 times. doi: 10.1002/sim.1228 | spa |
dcterms.bibliographicCitation | Adeniyi, D.A., Wei, Z., Yongquan, Y. Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN) classification method (Open Access) (2016) Applied Computing and Informatics, 12 (1), pp. 90-108. Cited 266 times. https://www.emeraldgrouppublishing.com/journal/aci doi: 10.1016/j.aci.2014.10.001 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | DOI 10.1007/978-3-031-10539-5_14 | |
dc.subject.keywords | Customer Churn; | spa |
dc.subject.keywords | Sales; | spa |
dc.subject.keywords | Customer Relationship Management | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.