Mostrar el registro sencillo del ítem
Quantitatively relating cosmic rays intensities from solar activity parameters based on structural equation modeling
dc.contributor.author | D Sierra-Porta | |
dc.contributor.author | Tarazona-Alvarado, M | |
dc.contributor.author | Villalba-Acevedo, Jorge | |
dc.date.accessioned | 2023-06-02T18:24:07Z | |
dc.date.available | 2023-06-02T18:24:07Z | |
dc.date.issued | 2023-03-06 | |
dc.date.submitted | 2023-06-02 | |
dc.identifier.citation | D. Sierra-Porta, M. Tarazona-Alvarado, Jorge Villalba-Acevedo. (2023). Quantitatively relating cosmic rays intensities from solar activity parameters based on structural equation modeling. Advances in Space Research, 72(2). https://doi.org/10.1016/j.asr.2023.02.044 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12084 | |
dc.description.abstract | Cosmic rays measured through neutron monitors on Earth’s surface have a strong correlation with the number of sunspots on the solar photosphere. Other indices that affect the dynamics of the heliosphere and distortions in the Earth’s geomagnetic field also exhibit significant correlations. Typically, studies focus on these indices individually or combine some into a smaller set of estimators. This study uses Structural Equation Modeling to examine relationships between a broad range of parameters of solar dynamics and cosmic ray intensity (measured by the Moscow neutron monitor) across several solar cycles from 1976 to present day. The study also classifies these indices into three distinct contributions: Photosphere, Solar Wind and Terrestrial Geomagnetic Field Distortions. Regression models were built for all solar cycles and the complete cosmic ray series from 1976 to the present, resulting in good estimators with calculated p-values below 0.05 (95% confidence). Relationships among all contributions were determined using their estimators. | spa |
dc.format.extent | ||
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.source | Advances in Space Research - Vol. 72 No. 1 (2023) | spa |
dc.title | Quantitatively relating cosmic rays intensities from solar activity parameters based on structural equation modeling | spa |
dcterms.bibliographicCitation | Anderson, J.C., Gerbing, D.W., 1988. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 103, 411–423. https://doi.org/10.1037/0033-2909.103.3.411. | spa |
dcterms.bibliographicCitation | Aslam, O.P.M., Badruddin, 2017. Study of the geoeffectiveness and galactic cosmic-ray response of VarSITI-ISEST campaign events in solar cycle 24. Sol. Phys. 292, 135. https://doi.org/10.1007/s11207-017- 1160-x. | spa |
dcterms.bibliographicCitation | Axford, W.I., 1965. The modulation of galactic cosmic rays in the interplanetary medium. Planet. Space Sci. 13, 115–130. https://doi.org/ 10.1016/0032-0633(65)90181-9, URL: https://www.sciencedirect.com/science/article/pii/0032063365901819. | spa |
dcterms.bibliographicCitation | Bazilevskaya, G.A., Cliver, E.W., Kovaltsov, G.A., Ling, A.G., Shea, M. A., Smart, D.F., Usoskin, I.G., 2014. Solar cycle in the heliosphere and cosmic rays. Space Sci. Rev. 186, 409–435. https://doi.org/10.1007/ s11214-014-0084-0. | spa |
dcterms.bibliographicCitation | Bentler, P.M., Bonett, D.G., 1980. Significance tests and goodness of fit in the analysis of covariance structures. Psychol. Bull. 88, 588–606. https://doi.org/10.1037/0033-2909.88.3.588 | spa |
dcterms.bibliographicCitation | Bhargawa, A., Singh, A., 2021. Elucidation of some solar parameters observed during solar cycles 21–24. Adv. Space Res. 68, 2643–2660. | spa |
dcterms.bibliographicCitation | Byrne, B.M., Shavelson, R.J., Muthe´n, B., 1989. Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance. Psychol. Bull. 105, 456–466. https:// doi.org/10.1037/0033-2909.105.3.456 | spa |
dcterms.bibliographicCitation | Chowdhury, P., Dwivedi, B.N., Ray, P.C., 2011. Solar modulation of galactic cosmic rays during 19–23 solar cycles. New Astron. 16, 430– 438. https://doi.org/10.1016/j.newast.2011.03.003, URL: https:// www.sciencedirect.com/science/article/pii/S1384107611000248 | spa |
dcterms.bibliographicCitation | Cliver, E.W., Boriakoff, V., Bounar, K.H., 1996. The 22-year cycle of geomagnetic and solar wind activity. J. Geophys. Res.: Space Phys. 101, 27091–27109. https://doi.org/10.1029/96JA02037, URL: https:// onlinelibrary.wiley.com/doi/abs/10.1029/96JA02037. | spa |
dcterms.bibliographicCitation | Cliver, E.W., Richardson, I.G., Ling, A.G., Solar drivers of 11-yr and long-term cosmic ray modulation. Space Sci. Rev. URL: https:// ntrs.nasa.gov/citations/20110023416, https://doi.org/10.1007/s11214- 011-9746-3. NTRS Author Affiliations: Air Force Research Lab., Maryland Univ., Atmospheric and Environmental Research, Inc. NTRS Report/Patent Number: GSFC.JA.5411.2011 NTRS Document ID: 20110023416 NTRS Research Center: Goddard Space Flight Center (GSFC). | spa |
dcterms.bibliographicCitation | Davis, L., 1955. Interplanetary magnetic fields and cosmic rays. Phys. Rev. 100, 1440–1444. https://doi.org/10.1103/PhysRev.100.1440. | spa |
dcterms.bibliographicCitation | Davis, T.N., Sugiura, M., 1966. Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res. (1896–1977) 71, 785– 801. URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/ JZ071i003p00785, https://doi.org/10.1029/JZ071i003p00785. | spa |
dcterms.bibliographicCitation | Desai, M., Giacalone, J., 2016. Large gradual solar energetic particle events. Living Rev. Sol. Phys. 13, 3. https://doi.org/10.1007/s41116- 016-0002-5. | spa |
dcterms.bibliographicCitation | Dorman, L.I., 1991. Cosmic ray modulation. Nucl. Phys. B Proc. Suppl. 22, 21–45. https://doi.org/10.1016/0920-5632(91)90005-Y, URL: https://www.sciencedirect.com/science/article/pii/092056329190005Y | spa |
dcterms.bibliographicCitation | Engelbrecht, N.E., Effenberger, F., Florinski, V., Potgieter, M.S., Ruffolo, D., Chhiber, R., Usmanov, A.V., Rankin, J.S., Els, P.L., 2022. Theory of cosmic ray transport in the heliosphere. Space Sci. Rev. 218, 33. https://doi.org/10.1007/s11214-022-00896-1 | spa |
dcterms.bibliographicCitation | Eroshenko, E., Belov, A., Mavromichalaki, H., Mariatos, G., Oleneva, V., Plainaki, C., Yanke, V., 2004. Cosmic-ray variations during the two greatest bursts of solar activity in the 23rd solar cycle. Sol. Phys. 224, 345–358. https://doi.org/10.1007/s11207-005-5719-6. | spa |
dcterms.bibliographicCitation | Fiandrini, E., Tomassetti, N., Bertucci, B., Donnini, F., Graziani, M., Khiali, B., Reina Conde, A., 2021. Numerical modeling of cosmic rays in the heliosphere: Analysis of proton data from AMS-02 and PAMELA. Phys. Rev. D 104, 023012. https://doi.org/10.1103/ PhysRevD.104.023012. | spa |
dcterms.bibliographicCitation | Gaisser, T.K., Stanev, T., 2006. High-energy cosmic rays. Nucl. Phys. A 777, 98–110. https://doi.org/10.1016/j.nuclphysa.2005.01.024, URL: https://www.sciencedirect.com/science/article/pii/S0375947405000540. | spa |
dcterms.bibliographicCitation | Giacalone, J., Drake, J.F., Jokipii, J.R., 2012. The acceleration mechanism of anomalous cosmic rays. Space Sci. Rev. 173, 283–307. https:// doi.org/10.1007/s11214-012-9915-z. | spa |
dcterms.bibliographicCitation | Gopalswamy, N., Yashiro, S., Akiyama, S., 2016. Unusual polar conditions in solar cycle 24 and their implications for cycle 25. Astrophys. J. Lett. 823, L15. https://doi.org/10.3847/2041-8205/823/1/ L15. | spa |
dcterms.bibliographicCitation | Inceoglu, F., Knudsen, M.F., Karoff, C., Olsen, J., 2014. Modeling the relationship between neutron counting rates and sunspot numbers using the hysteresis effect. Sol. Phys. 289, 1387–1402. https://doi.org/ 10.1007/s11207-013-0391-8. | spa |
dcterms.bibliographicCitation | Iskra, K., Siluszyk, M., Alania, M., Wozniak, W., 2019. Experimental investigation of the delay time in galactic cosmic ray flux in different epochs of solar magnetic cycles: 1959–2014. Sol. Phys. 294, 115. https://doi.org/10.1007/s11207-019-1509-4. | spa |
dcterms.bibliographicCitation | Janardhan, P., Fujiki, K., Ingale, M., Bisoi, S.K., Rout, D., 2018. Solar cycle 24: An unusual polar field reversal. Astron. Astrophys. 618, A148. https://doi.org/10.1051/0004-6361/201832981, URL: https:// www.aanda.org/articles/aa/abs/2018/10/aa32981-18/aa32981-18.html. | spa |
dcterms.bibliographicCitation | Jian, L.K., Russell, C.T., Luhmann, J.G., 2011. Comparing solar minimum 23/24 with historical solar wind records at 1 AU. Sol. Phys. 274, 321–344. https://doi.org/10.1007/s11207-011-9737-2. | spa |
dcterms.bibliographicCitation | Joo¨reskog, K.G., Soo¨rbom, D., 1984. LISREL VI, analysis of linear structural relationships by maximum likelihood, instrumental variables, and least squares methods, 4th ed ed. Scientific Software Inc, Mooresville, Ind, OCLC: 38667546. | spa |
dcterms.bibliographicCitation | Jo¨reskog, K.G., So¨rbom, D., 1982. Recent Developments in Structural Equation Modeling. J. Mark. Res. 19, 404–416. https://doi.org/ 10.1177/002224378201900402. | spa |
dcterms.bibliographicCitation | Kilpua, E.K.J., Luhmann, J.G., Jian, L.K., Russell, C.T., Li, Y., 2014. Why have geomagnetic storms been so weak during the recent solar minimum and the rising phase of cycle 24? J. Atmosph. Sol.-Terrestrial Phys. 107, 12–19. https://doi.org/10.1016/j.jastp.2013.11.001, URL: https://www.sciencedirect.com/science/article/pii/S1364682613002903. | spa |
dcterms.bibliographicCitation | Klecker, B., Mewaldt, R.A., Cummings, A.C., 1998. Anomalous Cosmic Rays. In: Fisk, L.A., Jokipii, J.R., Simnett, G.M., von Steiger, R., Wenzel, K.P. (Eds.), Space Science Reviews, vol. 3. Springer, Dordrecht, Netherlands, pp. 259–308, URL: https://resolver.caltech. edu/CaltechAUTHORS:20150107-155451895. | spa |
dcterms.bibliographicCitation | Koldobskiy, S.A., Ka¨hko¨nen, R., Hofer, B., Krivova, N.A., Kovaltsov, G.A., Usoskin, I.G., 2022. Time lag between cosmic-ray and solar variability: sunspot numbers and open solar magnetic flux. Sol. Phys. 297, 38. https://doi.org/10.1007/s11207-022-01970-1. | spa |
dcterms.bibliographicCitation | Komitov, B., Duchlev, P., 2014. Synthetic solar x-ray flares time series since 1968 ad 40, D2.2-35-14. URL: https://ui.adsabs.harvard.edu/ abs/2014cosp...40E1562K. aDS Bibcode: 2014cosp...40E1562K. | spa |
dcterms.bibliographicCitation | Komitov, B., Duchlev, P., Koleva, K., Dechev, M., 2010. Synthetic solar X-ray flares time series since AD 1968/s2. URL: http://arxiv.org/abs/ 1007.2735, https://doi.org/10.48550/arXiv.1007.2735. arXiv:1007.2735 [astro-ph]. | spa |
dcterms.bibliographicCitation | Mavromichalaki, H., Paouris, E., Karalidi, T., 2007. Cosmic-ray modulation: an empirical relation with solar and heliospheric parameters. Sol. Phys. 245, 369–390. https://doi.org/10.1007/s11207-007-9043-1. | spa |
dcterms.bibliographicCitation | Mavromichalaki, H., Papaioannou, A., Plainaki, C., Sarlanis, C., Souvatzoglou, G., Gerontidou, M., Papailiou, M., Eroshenko, E., Belov, A., Yanke, V., Flu¨ckiger, E.O., Bu¨tikofer, R., Parisi, M., Storini, M., Klein, K.L., Fuller, N., Steigies, C.T., Rother, O.M., Heber, B., Wimmer-Schweingruber, R.F., Kudela, K., Strharsky, I., Langer, R., Usoskin, I., Ibragimov, A., Chilingaryan, A., Hovsepyan, G., Reymers, A., Yeghikyan, A., Kryakunova, O., Dryn, E., Nikolayevskiy, N., Dorman, L., Pustil’nik, L., 2011. Applications and usage of the real-time Neutron Monitor Database. Adv. Space Res. 47, 2210–2222. https://doi.org/10.1016/j.asr.2010.02.019, URL: https:// www.sciencedirect.com/science/article/pii/S0273117710001249. | spa |
dcterms.bibliographicCitation | Mavromichalaki, H., Papaioannou, A., Sarlanis, C., Souvatzoglou, G., Gerontidou, M., Plainaki, C., Papailiou, M., Mariatos, G., Nmdb Team, 2010. Establishing and Using the Real-Time Neutron Monitor Database (NMDB), p. 75. URL: https://ui.adsabs.harvard.edu/abs/ 2010ASPC.424...75M. aDS Bibcode: 2010ASPC.424...75M | spa |
dcterms.bibliographicCitation | McCracken, K.G., McDonald, F.B., Beer, J., Raisbeck, G., Yiou, F., 2004. A phenomenological study of the long-term cosmic ray modulation, 850–1958 AD. J. Geophys. Res.: Space Phys. 109. https://doi. org/10.1029/2004JA010685, URL: https://onlinelibrary.wiley.- com/doi/abs/10.1029/2004JA010685 | spa |
dcterms.bibliographicCitation | Mueller, 1999 R.O. Mueller Basic Principles of Structural Equation Modeling: An Introduction to LISREL and EQS Springer Science & Business Media (1999) Google-Books-ID: sXy2r5gQlB0C | spa |
dcterms.bibliographicCitation | Mueller and Hancock, 2018 R.O. Mueller, G.R. Hancock Structural Equation Modeling The Reviewer’s Guide to Quantitative Methods in the Social Sciences (2 ed.), Routledge (2018) | spa |
dcterms.bibliographicCitation | Nagashima, K., Morishita, I., Twenty-two year modulation of cosmic rays associated with polarity reversal of polar magnetic field of the sun. Planet. Space Sci. 28, 195–205. https://doi.org/10.1016/0032-0633(80) 90095-1. URL: https://www.sciencedirect.com/science/article/pii/ 0032063380900951. | spa |
dcterms.bibliographicCitation | Nakagawa, Y., Nozawa, S., Shinbori, A., 2019. Relationship between the low-latitude coronal hole area, solar wind velocity, and geomagnetic activity during solar cycles 23 and 24. Earth, Planets Space 71, 24. https://doi.org/10.1186/s40623-019-1005-y. | spa |
dcterms.bibliographicCitation | Paouris, E., Mavromichalaki, H., Belov, A., Gushchina, R., Yanke, V., 2012. Galactic cosmic ray modulation and the last solar minimum. Sol. Phys. 280, 255–271. https://doi.org/10.1007/s11207-012-0051-4 | spa |
dcterms.bibliographicCitation | Popielawska, B., 1992. Components of the 11- and 22-year variation of cosmic rays. Planet. Space Sci. 40, 811–827. https://doi.org/10.1016/ 0032-0633(92)90109-2, URL: https://www.sciencedirect.com/science/ article/pii/0032063392901092. | spa |
dcterms.bibliographicCitation | Potgieter, M.S., 1995. The long-term modulation of galactic cosmic rays in the heliosphere. Adv. Space Res. 16, 191–203. https://doi.org/10.1016/ 0273-1177(95)00334-B, URL: https://www.sciencedirect.com/science/ article/pii/027311779500334B. | spa |
dcterms.bibliographicCitation | Potgieter, M.S., Le Roux, J.A., 1992. The Simulated Features of Heliospheric Cosmic-Ray Modulation with a Time-dependent Drift Model. I. General Effects of the Changing Neutral Sheet over the Period 1985–1990. Astrophys. J. 386, 336. https://doi.org/10.1086/ 171020, aDS Bibcode: 1992ApJ...386.336P. URL: https://ui.adsabs. harvard.edu/abs/1992ApJ...386.336P | spa |
dcterms.bibliographicCitation | Reames, D.V., 2013. The Two Sources of Solar Energetic Particles. Space Sci. Rev. 175, 53–92. https://doi.org/10.1007/s11214-013-9958-9. | spa |
dcterms.bibliographicCitation | Richardson, I.G., Cane, H.V., 2012a. Near-earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963– 2011). J. Space Weather Space Climate 2, A02. https://doi.org/ 10.1051/swsc/2012003, URL: https://www.swsc-journal.org/articles/ swsc/abs/2012/01/swsc120017/swsc120017.html. | spa |
dcterms.bibliographicCitation | Richardson, I.G., Cane, H.V., 2012b. Solar wind drivers of geomagnetic storms during more than four solar cycles. J. Space Weather Space Climate 2, A01. https://doi.org/10.1051/swsc/2012001, URL: https:// www.swsc-journal.org/articles/swsc/abs/2012/01/swsc120012/ swsc120012.html | spa |
dcterms.bibliographicCitation | Richardson, I.G., Cane, H.V., Cliver, E.W., 2002. Sources of geomagnetic activity during nearly three solar cycles (1972–2000). J. Geophys. Res.: Space Phys. 107, SSH 8–1–SSH 8–13. https://doi.org/10.1029/ 2001JA000504. URL: https://onlinelibrary.wiley.com/doi/abs/10. 1029/2001JA000504. | spa |
dcterms.bibliographicCitation | Richardson, I.G., Cliver, E.W., Cane, H.V., 2000. Sources of geomagnetic activity over the solar cycle: Relative importance of coronal mass ejections, high-speed streams, and slow solar wind. J. Geophys. Res.: Space Phys. 105, 18203–18213. https://doi.org/10.1029/1999JA000400. URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/1999JA000400. | spa |
dcterms.bibliographicCitation | Richardson, I.G., Cliver, E.W., Cane, H.V., 2001. Sources of geomagnetic storms for solar minimum and maximum conditions during 1972– 2000. Geophys. Res. Lett. 28, 2569–2572. https://doi.org/10.1029/ | spa |
dcterms.bibliographicCitation | Richardson, I.G., Cliver, E.W., Cane, H.V., 2001. Sources of geomagnetic storms for solar minimum and maximum conditions during 1972–2000. Geophys. Res. Lett. 28, 2569–2572. https://doi.org/10.1029/2001GL013052. URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/2001GL013052 | spa |
dcterms.bibliographicCitation | Ross, E., Chaplin, W.J., 2019. The behaviour of galactic cosmic-ray intensity during solar activity cycle 24. Sol. Phys. 294, 8. https://doi. org/10.1007/s11207-019-1397-7. | spa |
dcterms.bibliographicCitation | Russell, C.T., Luhmann, J.G., Jian, L.K., 2010. How unprecedented a solar minimum?. Rev. Geophys. 48. https://doi.org/10.1029/ 2009RG000316 URL: https://onlinelibrary.wiley.com/doi/abs/10. 1029/2009RG000316. | spa |
dcterms.bibliographicCitation | Shaul, D.N.A., Aplin, K.L., Arau´jo, H., Bingham, R., Blake, J.B., Branduardi-Raymont, G., Buchman, S., Fazakerley, A., Finn, L.S., Fletcher, L., Glover, A., Grimani, C., Hapgood, M., Kellet, B., Matthews, S., Mulligan, T., Ni, W., Nieminen, P., Posner, A., Quenby, J.J., Roming, P., Spence, H., Sumner, T., Vocca, H., Wass, P., Young, P., 2006. Solar And Cosmic Ray Physics And The Space Environment: Studies For And With LISA, pp. 172–178. https://doi.org/10.1063/1. 2405038. URL: https://aip.scitation.org/doi/abs/10.1063/1.2405038. | spa |
dcterms.bibliographicCitation | Sheskin, D.J., 2003. Handbook of Parametric and Nonparametric Statistical Procedures, third ed. Chapman and Hall/CRC, New York. https://doi.org/10.1201/9781420036268. | spa |
dcterms.bibliographicCitation | Shrivastava, P.K., 1997. Charecteristics of long-term cosmic ray modulation during different phases of sun spot cycles in relation with polarity of solar magnetic field., p. 65. URL: https://ui.adsabs. harvard.edu/abs/1997ICRC....2...65S. aDS Bibcode: 1997ICRC....2...65S. | spa |
dcterms.bibliographicCitation | Sierra-Porta, D., 2018. Cross correlation and time-lag between cosmic ray intensity and solar activity during solar cycles 21, 22 and 23. Astrophys. Space Sci. 363, 137. https://doi.org/10.1007/s10509-018- 3360-8. | spa |
dcterms.bibliographicCitation | Singh, M., Badruddin, B., Asiri, H., 2021. Hysteresis, time lag, and relation between solar activity and cosmic rays during solar cycle 24. New Astron. 89, 101652. https://doi.org/10.1016/j.newast.2021.101652, URL: https://www.sciencedirect.com/science/article/ pii/S1384107621000841. | spa |
dcterms.bibliographicCitation | Somaı¨la, K., Yacouba, S., Louis, Z.J., 2022. Solar wind and geomagnetic activity during two antagonist solar cycles: Comparative study between the solar cycles 23 and 24. Int. J. Phys. Sci. 17, 57–66. https://doi.org/10.5897/IJPS2022.4998, URL: https://academicjournals.org/journal/IJPS/article-abstract/4A39F8869748 | spa |
dcterms.bibliographicCitation | Stauning, P., 2015. A critical note on the IAGA-endorsed Polar Cap index procedure: effects of solar wind sector structure and reverse polar convection, pp. 1443–1455. https://doi.org/10.5194/angeo-33-1443- 2015. URL: https://angeo.copernicus.org/articles/33/1443/2015/. | spa |
dcterms.bibliographicCitation | Takalo, J., 2021. Comparison of Geomagnetic Indices During Even and Odd Solar Cycles SC17 – SC24: Signatures of Gnevyshev Gap in Geomagnetic Activity. Sol. Phys. 296, 19. https://doi.org/10.1007/ s11207-021-01765-w | spa |
dcterms.bibliographicCitation | Troshichev, O.A., 2022. PC index as a ground-based indicator of the solar wind energy incoming into the magnetosphere: (1) relation of PC index to the solar wind electric field EKL. Front. Astron. Space Sci. 9, 1069470. https://doi.org/10.3389/fspas.2022.1069470, aDS Bibcode: 2022FrASS...969470T. URL: https://ui.adsabs.harvard.edu/abs/ 2022FrASS...969470T | spa |
dcterms.bibliographicCitation | Tsurutani, B.T., Echer, E., Guarnieri, F.L., Gonzalez, W.D., 2011. The properties of two solar wind high speed streams and related geomagnetic activity during the declining phase of solar cycle 23. J. Atmos. Solar Terr. Phys. 73, 164–177. https://doi.org/10.1016/j.- jastp.2010.04.003, URL: https://www.sciencedirect.com/science/article/pii/S1364682610001197 | spa |
dcterms.bibliographicCitation | Wibberenz, G., Richardson, I.G., Cane, H.V., 2002. A simple concept for modeling cosmic ray modulation in the inner heliosphere during solar cycles 20–23. J. Geophys. Res.: Space Phys. 107, SSH 5-1–SSH 5-15. https://doi.org/10.1029/2002JA009461, URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/2002JA009461. | spa |
dcterms.bibliographicCitation | Zerbo, J.L., Richardson, J.D., 2015. The solar wind during current and past solar minima and maxima. J. Geophys. Res.: Space Phys. 120, 10250–10256. https://doi.org/10.1002/2015JA021407, URL: https:// onlinelibrary.wiley.com/doi/abs/10.1002/2015JA021407. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.subject.keywords | Cosmic rays | spa |
dc.subject.keywords | Sun dynamics | spa |
dc.subject.keywords | Modelling | spa |
dc.subject.keywords | Heliospheric Abundances | spa |
dc.subject.keywords | Photosphere | spa |
dc.subject.keywords | Solar wind | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | CC0 1.0 Universal | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
dc.audience | Público general | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.