Mostrar el registro sencillo del ítem

dc.contributor.authorDe la Parra Guerra, Ana
dc.contributor.authorAcevedo Barrios, Rosa
dc.coverage.spatialColombia, Cartagena de Indias
dc.date.accessioned2023-06-01T14:02:20Z
dc.date.available2023-06-01T14:02:20Z
dc.date.issued2023-04-14
dc.date.submitted2023-06-01
dc.identifier.citationDe la Parra‐Guerra, A. C., & Acevedo‐Barrios, R. Studies of endocrine disruptors: nonylphenol and isomers in biological models. Environmental Toxicology and Chemistry. 0 (0), 1-12. https://doi.org/10.1002/etc.5633spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/11971
dc.description.abstractAbstract Certain emerging pollutants are among the most widely used chemicals globally, causing widespread concern in relation to their use in products devoted to cleaniness and asepsis. Nonylphenol ethoxylate (NPEOn) is one such contaminant, along with its degradation product, nonylphenol, an active ingredient presents in nonionic surfactants used as herbicides, cosmetics, paints, plastics, disinfectants, and detergents. These chemicals and their metabolites are commonly found in environmental matrices. Nonylphenol and NPEOn, used, are particularly concerning, given their role as endocrine disruptors chemical and possible neurotoxic effects recorded in several biological models, primarily aquatic organisms. Limiting and detecting these compounds remain of paramount importance. The objective of the present review was to evaluate the toxic effects of nonylphenol and NPEOn in different biological models. Environ Toxicol Chem 2023;00:1–12. © 2023 SETACspa
dc.description.sponsorshipUniversidad de la Costa/Universidad Tecnológica de Bolívarspa
dc.format.extent12 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceEnvironmental Toxicology and Chemistry - Vol. 42 No. 6 (2023)spa
dc.titleStudies of Endocrine Disruptors: Nonylphenol and Isomers in Biological Modelsspa
dcterms.bibliographicCitationAbdel Rahman, A. N., Mahmoud, S. M., Khamis, T., Rasheed, N., Mohamed, D. I., Ghanem, R., Mansour, D. M., Ismail, T. A., & Mahboub, H. H. (2022). Palliative effect of dietary common sage leaves against toxic impacts of nonylphenol in mirror carp (Cyprinus carpio var specularis): Growth, gene expression, immune-antioxidant status, and histopathological alterations. Aquaculture Reports, 25, 101200. https://doi.org/10.1016/j.aqrep.2022.101200spa
dcterms.bibliographicCitationAbdulrahman, I., Jamal Mamdoh, T., & Sathianeson, S. (2022). The anti-settlement activity of extracts of marine bacteria associated with soft corals against barnacle larvae. Egyptian Journal of Aquatic Biology and Fisheries, 26(3), 885– 900. https://doi.org/10.21608/ejabf.2022.248212spa
dcterms.bibliographicCitationAcir, I. H., & Guenther, K. (2018). Endocrine-disrupting metabolites of alkylphenol ethoxylates—A critical review of analytical methods, environmental occurrences, toxicity, and regulation. Science of the Total Environment, 635, 1530– 1546. https://doi.org/10.1016/j.scitotenv.2018.04.079spa
dcterms.bibliographicCitationAmaninejad, P., Hosseinzadeh Sahafi, H., Soltani, M., & Hosseini Shekarabi, S. P. (2018). Endocrine disrupting effects of 4-nonylphenol on plasma vitellogenin, reproductive system and histology in koi carp (Cyprinus carpio). International Aquatic Research; A Journal of Science and Its Applications, 10(3), 263– 274. https://doi.org/10.1007/s40071-018-0203-8spa
dcterms.bibliographicCitationAronzon, C. M. (2012). Evaluación de la toxicidad de los contaminantes cobre, nonilfenol y diazinón sobre embriones y larvas de Rhinella (Bufo) arenarum [Embryo-larval toxicity of pollutants, copper, nonylphenol and dizinon on Rhinella (Bufo) arenarum]. Doctoral dissertation, Universidad de Buenos Aires. http://hdl.handle.net/20.500.12110/tesis_n5340_Aronzonspa
dcterms.bibliographicCitationAtienzar, F. A., Billinghurst, Z., & Depledge, M. H. (2002). 4-n-Nonylphenol and 17-β estradiol may induce common DNA effects in developing barnacle larvae. Environmental Pollution, 120(3), 735– 738. https://doi.org/10.1016/S0269-7491(02)00184-7spa
dcterms.bibliographicCitationBednářová, A., Kropf, M., & Krishnan, N. (2020). The surfactant polyethoxylated tallowamine (POEA) reduces lifespan and inhibits fecundity in Drosophila melanogaster–In vivo and in vitro study. Ecotoxicology and Environmental Safety, 188, 109883. https://doi.org/10.1016/j.ecoenv.2019.109883spa
dcterms.bibliographicCitationBhandari, G., Bagheri, A. R., Bhatt, P., & Bilal, M. (2021). Occurrence, potential ecological risks, and degradation of endocrine disrupter, nonylphenol, from the aqueous environment. Chemosphere, 275, 130013. https://doi.org/10.1016/j.chemosphere.2021.130013spa
dcterms.bibliographicCitationBillinghurst, Z., Clare, A. S., Fileman, T., Mcevoy, J., Readman, J., & Depledge, M. H. (1998). Inhibition of barnacle settlement by the environmental oestrogen 4-nonylphenol and the natural oestrogen 17β oestradiol. Marine Pollution Bulletin, 36(10), 833– 839. https://doi.org/10.1016/S0025-326X(98)00074-5spa
dcterms.bibliographicCitationGovernment of Canada. (1999). Canadian Environmental Protection Act, 1999. https://laws-lois.justice.gc.ca/eng/acts/c-15.31/spa
dcterms.bibliographicCitationCareghini, A., Mastorgio, A. F., Saponaro, S., & Sezenna, E. (2015). Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: A review. Environmental Science and Pollution Research, 22(8), 5711– 5741. https://doi.org/10.1007/s11356-014-3974-5spa
dcterms.bibliographicCitationChen, W., Pan, S., Cheng, H., Sweetman, A. J., Zhang, H., & Jones, K. C. (2018). Diffusive gradients in thin-films (DGT) for in situ sampling of selected endocrine disrupting chemicals (EDCs) in waters. Water Research, 137, 211– 219. https://doi.org/10.1016/j.watres.2018.03.029spa
dcterms.bibliographicCitationChłopecka, M., Mendel, M., Dziekan, N., & Karlik, W. (2017). The effect of glyphosate-based herbicide Roundup and its co-formulant, POEA, on the motoric activity of rat intestine—In vitro study. Environmental Toxicology and Pharmacology, 49, 156– 162. https://doi.org/10.1016/j.etap.2016.12.010spa
dcterms.bibliographicCitationConselho Nacional Do Meio Ambiente. (2005). Resolução CONAMA no 357, de 17 de março de 2005—4a Câmara—Meio Ambiente e Patrimônio Cultural. https://www.mpf.mp.br/atuacao-tematica/ccr4/dados-da-atuacao/projetos/qualidade-da-agua/legislacao/resolucoes/resolucao-conama-no-357-de-17-de-marco-de-2005/viewspa
dcterms.bibliographicCitationCrago, J., Tran, K., Budicin, A., Schreiber, B., Lavado, R., & Schlenk, D. (2015). Exploring the impacts of two separate mixtures of pesticide and surfactants on estrogenic activity in male fathead minnows and rainbow trout. Archives of Environmental Contamination and Toxicology, 68(2), 362– 370. https://doi.org/10.1007/s00244-014-0098-3spa
dcterms.bibliographicCitationDe la Parra-Guerra, A., & Olivero-Verbel, J. (2020). Toxicity of nonylphenol and nonylphenol ethoxylate on Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 187, 109709. https://doi.org/10.1016/j.ecoenv.2019.109709spa
dcterms.bibliographicCitationDe la Parra-Guerra, A., Stürzenbaum, S., & Olivero-Verbel, J. (2020). Intergenerational toxicity of nonylphenol ethoxylate (NP-9) in Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 197, 110588. https://doi.org/10.1016/j.ecoenv.2020.110588spa
dcterms.bibliographicCitationDing, J., Cheng, Y., Hua, Z., Yuan, C., & Wang, X. (2019). The effect of dissolved organic matter (DOM) on the release and distribution of endocrine-disrupting chemicals (EDCs) from sediment under hydrodynamic forces, A case study of bisphenol A (BPA) and nonylphenol (NP). International Journal of Environmental Research and Public Health, 16(10), 1724. https://doi.org/10.3390/ijerph16101724spa
dcterms.bibliographicCitationDomene, X., Ramírez, W., Solà, L., Alcañiz, J. M., & Andrés, P. (2009). Soil pollution by nonylphenol and nonylphenol ethoxylates and their effects to plants and invertebrates. Journal of Soils and Sediments, 9(6), 555– 567. https://doi.org/10.1007/s11368-009-0117-6spa
dcterms.bibliographicCitationDüring, R.-A., Krahe, S., & Gäth, S. (2002). Sorption behavior of nonylphenol in terrestrial oils. Environmental Science & Technology, 36(19), 4052– 4057. https://doi.org/10.1021/es0103389spa
dcterms.bibliographicCitationDwivedi, S., D'Souza, L. C., Shetty, N. G., Raghu, S. V., & Sharma, A. (2022). Hsp27, a potential EcR target, protects nonylphenol-induced cellular and organismal toxicity in Drosophila melanogaster. Environmental Pollution, 293, 118484. https://doi.org/10.1016/J.ENVPOL.2021.118484spa
dcterms.bibliographicCitationEuropean Commission. (2002). European Union Risk Assessment Report 4-nonylphenol (branched) and nonylphenol (Vol. 10, Issue EUR 20387 EN). European Commission—Joint Research Centre.spa
dcterms.bibliographicCitationFabbri, R., Montagna, M., Balbi, T., Raffo, E., Palumbo, F., & Canesi, L. (2014). Adaptation of the bivalve embryotoxicity assay for the high throughput screening of emerging contaminants in Mytilus galloprovincialis. Marine Environmental Research, 99, 1– 8. https://doi.org/10.1016/j.marenvres.2014.05.007spa
dcterms.bibliographicCitationFlores-Nunes, F., Mattos, J. J., Zacchi, F. L., Serrano, M. A. S., Piazza, C. E., Sasaki, S. T., Taniguchi, S., Bicego, M. C., Melo, C. M. R., & Bainy, A. C. D. (2015). Effect of linear alkylbenzene mixtures and sanitary sewage in biochemical and molecular responses in Pacific oyster Crassostrea gigas. Environmental Science and Pollution Research, 22(22), 17386– 17396. https://doi.org/10.1007/s11356-015-4486-7spa
dcterms.bibliographicCitationGao, D., Liu, X., Junaid, M., Liao, H., Chen, G., Wu, Y., & Wang, J. (2022). Toxicological impacts of micro(nano)plastics in the benthic environment. Science of the Total Environment, 836, 155620. https://doi.org/10.1016/j.scitotenv.2022.155620spa
dcterms.bibliographicCitationGheorghe, S., Stan, M. S., Mitroi, D. N., Staicu, A. C., Cicirma, M., Lucaciu, I. E., Nita-Lazar, M., & Dinischiotu, A. (2022). Oxidative stress and histopathological changes in gills and kidneys of Cyprinus carpio following exposure to benzethonium chloride, a cationic surfactant. Toxics, 10(5), 227. https://doi.org/10.3390/toxics10050227spa
dcterms.bibliographicCitationGuéguen, M., Amiard, J.-C., Arnich, N., Badot, P.-M., Claisse, D., Guérin, T., & Vernoux, J.-P. (2011). Shellfish and residual chemical contaminants: Hazards, monitoring, and health risk assessment along French coasts. Reviews of Environmental Contamination and Toxicology, 213, 55– 111. https://doi.org/10.1007/978-1-4419-9860-6_3spa
dcterms.bibliographicCitationGuenther, K., Heinke, V., Thiele, B., Kleist, E., Prast, H., & Raecker, T. (2002). Endocrine disrupting nonylphenols are ubiquitous in food. Environmental Science & Technology, 36(8), 1676– 1680. https://doi.org/10.1021/es010199vspa
dcterms.bibliographicCitationHart, C. E., Lauth, M. J., Hunter, C. S., Krasny, B. R., & Hardy, K. M. (2016). Effect of 4-nonylphenol on the immune response of the Pacific oyster Crassostrea gigas following bacterial infection with Vibrio campbellii. Fish & Shellfish Immunology, 58, 449– 461. https://doi.org/10.1016/j.fsi.2016.09.054spa
dcterms.bibliographicCitationHong, Y., Feng, C., Yan, Z., Wang, Y., Liu, D., Liao, W., & Bai, Y. (2020). Nonylphenol occurrence, distribution, toxicity and analytical methods in freshwater. Environmental Chemistry Letters, 18(6), 2095– 2106. https://doi.org/10.1007/s10311-020-01060-3spa
dcterms.bibliographicCitationJacobsen, A. M., Mortensen, G. K., & Hansen, H. C. B. (2004). Degradation and mobility of linear alkylbenzene sulfonate and nonylphenol in sludge-amended soil. Journal of Environmental Quality, 33(1), 232– 240. https://doi.org/10.2134/jeq.2004.2320spa
dcterms.bibliographicCitationKawashima, Y., Onishi, Y., Tatarazako, N., Yamamoto, H., Koshio, M., Oka, T., Horie, Y., Watanabe, H., Nakamoto, T., Yamamoto, J., Ishikawa, H., Sato, T., Yamazaki, K., & Iguchi, T. (2022). Summary of seventeen chemicals evaluated by OECD TG229 using Japanese medaka, Oryzias latipes in EXTEND 2016. Journal of Applied Toxicology, 42(5), 750– 777. https://doi.org/10.1002/jat.4255spa
dcterms.bibliographicCitationKwack, S. J., Kwon, O., Kim, H. S., Kim, S. S., Kim, S. H., Sohn, K. H., Da Lee, R., Park, C. H., Jeung, E. B., & An, B. S. (2002). Comparative evaluation of alkylphenolic compounds on estrogenic activity in vitro and in vivo. Journal Toxicology and Environmental Health Part A, 65, 419– 431. https://doi.org/10.1080/15287390252808082spa
dcterms.bibliographicCitationKwon, Y. S., Jung, J. W., Kim, Y. J., Park, C. B., Shon, J. C., Kim, J. H., & Seo, J. S. (2020). Proteomic analysis of whole-body responses in medaka (Oryzias latipes) exposed to benzalkonium chloride. Journal of Environmental Science and Health, Part A, 55(12), 1387– 1397. https://doi.org/10.1080/10934529.2020.1796117spa
dcterms.bibliographicCitationLahnsteiner, F., Berger, B., Kletzl, M., & Weismann, T. (2005). Effect of bisphenol A on maturation and quality of semen and eggs in the brown trout, Salmo trutta f. fario. Aquatic Toxicology, 75(3), 213– 224. https://doi.org/10.1016/j.aquatox.2005.08.004spa
dcterms.bibliographicCitationle Gac, F., Thomas, J. L., Mourot, B., & Loir, M. (2001). In vivo and in vitro effects of prochloraz and nonylphenol ethoxylates on trout spermatogenesis. Aquatic Toxicology, 53(3–4), 187– 200. https://doi.org/10.1016/S0166-445X(01)00165-5spa
dcterms.bibliographicCitationLi, C., Jin, F., & Snyder, S. A. (2018). Recent advancements and future trends in analysis of nonylphenol ethoxylates and their degradation product nonylphenol in food and environment. TrAC, Trends in Analytical Chemistry, 107, 78– 90. https://doi.org/10.1016/j.trac.2018.07.021spa
dcterms.bibliographicCitationLu, J., Wu, J., Stoffella, P. J., & Wilson, P. C. (2013). Analysis of bisphenol A, nonylphenol, and natural estrogens in vegetables and fruits using gas chromatography—Tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 61(1), 84– 89. https://doi.org/10.1021/jf304971kspa
dcterms.bibliographicCitationMaggioni, S., Balaguer, P., Chiozzotto, C., & Benfenati, E. (2013). Screening of endocrine-disrupting phenols, herbicides, steroid estrogens, and estrogenicity in drinking water from the waterworks of 35 Italian cities and from PET-bottled mineral water. Environmental Science and Pollution Research, 20(3), 1649– 1660. https://doi.org/10.1007/s11356-012-1075-xspa
dcterms.bibliographicCitationMarin, M. G., Rigato, S., Ricciardi, F., & Matozzo, V. (2008). Lethal and estrogenic effects of 4-nonylphenol in the cockle Cerastoderma glaucum. Marine Pollution Bulletin, 57(6–12), 552– 558. https://doi.org/10.1016/j.marpolbul.2008.01.041spa
dcterms.bibliographicCitationMartínez-Zapata, M., Aristizábal, C., & Peñuela, G. (2013). Photodegradation of the endocrine-disrupting chemicals 4n-nonylphenol and triclosan by simulated solar UV irradiation in aqueous solutions with Fe (III) and in the absence/presence of humic acids. Journal of Photochemistry and Photobiology A, 251, 41– 49. https://doi.org/10.1016/j.jphotochem.2012.10.009spa
dcterms.bibliographicCitationMatozzo, V., Rova, G., Ricciardi, F., & Marin, M. G. (2008). Immunotoxicity of the xenoestrogen 4-nonylphenol to the cockle Cerastoderma glaucum. Marine Pollution Bulletin, 57(6), 453– 459. https://doi.org/10.1016/j.marpolbul.2008.02.019spa
dcterms.bibliographicCitationMesnage, R., Bernay, B., & Séralini, G. E. (2013). Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology, 313(2-3), 122– 128. https://doi.org/10.1016/j.tox.2012.09.006spa
dcterms.bibliographicCitationMona, M. H., El-Khodary, G. M., Abdel-Halim, K. Y., Omran, N. E., Abd El-Aziz, K. K., & El-Saidy, S. A. (2022). Histopathological alterations induced by marine environmental pollutants on the bivalve Cerastoderma glaucum (Bruguière 1789) from Temsah Lake, Suez Canal, Egypt. Environmental Science and Pollution Research, 29(7), 9971– 9989. https://doi.org/10.1007/s11356-021-14966-4spa
dcterms.bibliographicCitationMueller, G. C., & Kim, U.-H. (1978). Displacement of estradiol from estrogen receptors by simple alkyl phenols*. Endocrinology, 102(5), 1429– 1435. https://doi.org/10.1210/endo-102-5-1429spa
dcterms.bibliographicCitationMukherjee, U., Samanta, A., Biswas, S., Ghosh, S., Das, S., Banerjee, S., & Maitra, S. (2022). Chronic exposure to nonylphenol induces oxidative stress and liver damage in male zebrafish (Danio rerio): Mechanistic insight into cellular energy sensors, lipid accumulation and immune modulation. Chemico-Biological Interactions, 351, 109762. https://doi.org/10.1016/j.cbi.2021.109762spa
dcterms.bibliographicCitationMüller, A.-K., Markert, N., Leser, K., Kämpfer, D., Schiwy, S., Riegraf, C., Buchinger, S., Gan, L., Abdallah, A. T., Denecke, B., Segner, H., Brinkmann, M., Crawford, S. E., & Hollert, H. (2021). Bioavailability and impacts of estrogenic compounds from suspended sediment on rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 231, 105719. https://doi.org/10.1016/j.aquatox.2020.105719spa
dcterms.bibliographicCitationNice, H. E. (2005). Sperm motility in the Pacific oyster (Crassostrea gigas) is affected by nonylphenol. Marine Pollution Bulletin, 50(12), 1668– 1674. https://doi.org/10.1016/j.marpolbul.2005.07.006spa
dcterms.bibliographicCitationNice, H., Morritt, D., Crane, M., & Thorndyke, M. (2003). Long-term and transgenerational effects of nonylphenol exposure at a key stage in the development of Crassostrea gigas. Possible endocrine disruption? Marine Ecology Progress Series, 256, 293– 300. https://doi.org/10.3354/meps256293spa
dcterms.bibliographicCitationNiu, Y., Zhang, J., Duan, H., Wu, Y., & Shao, B. (2015). Bisphenol A and nonylphenol in foodstuffs: Chinese dietary exposure from the 2007 total diet study and infant health risk from formulas. Food Chemistry, 167, 320– 325. https://doi.org/10.1016/j.foodchem.2014.06.115spa
dcterms.bibliographicCitationNoorimotlagh, Z., Mirzaee, S. A., Martinez, S. S., Rachoń, D., Hoseinzadeh, M., & Jaafarzadeh, N. (2020). Environmental exposure to nonylphenol and cancer progression risk—A systematic review. Environmental Research, 184, 109263. https://doi.org/10.1016/j.envres.2020.109263spa
dcterms.bibliographicCitationPickford, K. A., Thomas-Jones, R. E., Wheals, B., Tyler, C. R., & Sumpter, J. P. (2003). Route of exposure affects the oestrogenic response of fish to 4-tert-nonylphenol. Aquatic Toxicology, 65(3), 267– 279. https://doi.org/10.1016/S0166-445X(03)00149-8spa
dcterms.bibliographicCitationQian, K., Jiang, X., Sun, L., Zhou, G., Ge, H., Fang, X., Xiao, L., & Wu, Q. (2018). Effect of montmorillonite on 4-Nonylphenol enrichment in zebrafish. International Journal of Environmental Research and Public Health, 15(6), 1217. https://doi.org/10.3390/ijerph15061217spa
dcterms.bibliographicCitationQuesada-Calderón, S., Bacigalupe, L. D., Toro-Vélez, A. F., Madera-Parra, C. A., Peña-Varón, M. R., & Cárdenas-Henao, H. (2017). The multigenerational effects of water contamination and endocrine disrupting chemicals on the fitness of Drosophila melanogaster. Ecology and Evolution, 7(16), 6519– 6526. https://doi.org/10.1002/ece3.3172spa
dcterms.bibliographicCitationRaecker, T., Thiele, B., Boehme, R. M., & Guenther, K. (2011). Endocrine disrupting nonyl- and octylphenol in infant food in Germany: Considerable daily intake of nonylphenol for babies. Chemosphere, 82(11), 1533– 1540. https://doi.org/10.1016/j.chemosphere.2010.11.065spa
dcterms.bibliographicCitationRicciardi, F., Matozzo, V., & Marin, M. G. (2008). Effects of 4-nonylphenol exposure in mussels (Mytilus galloprovincialis) and crabs (Carcinus aestuarii) with particular emphasis on vitellogenin induction. Marine Pollution Bulletin, 57(6–12), 365– 372. https://doi.org/10.1016/j.marpolbul.2008.02.023spa
dcterms.bibliographicCitationRingbeck, B., Bury, D., Hayen, H., Weiss, T., Brüning, T., & Koch, H. M. (2021). Determination of specific urinary nonylphenol metabolites by online-SPE-LC-MS/MS as novel human exposure biomarkers. Journal of Chromatography B, 1177, 122794. https://doi.org/10.1016/j.jchromb.2021.122794spa
dcterms.bibliographicCitationRíos, F. (2016). Environmental behavior of commercial surfactants: Biodegradability, toxicity and ozonation. Doctoral Thesis, University of Granada.spa
dcterms.bibliographicCitationSadmani, A. A., Andrews, R. C., & Bagley, D. M. (2014). Nanofiltration of pharmaceutically active and endocrine disrupting compounds as a function of compound interactions with DOM fractions and cations in natural water. Separation and Purification Technology, 122, 462– 471. https://doi.org/10.1016/j.seppur.2013.12.003spa
dcterms.bibliographicCitationSalgueiro-González, N., Campillo, J. A., Viñas, L., Beiras, R., López-Mahía, P., & Muniategui-Lorenzo, S. (2019). Occurrence of selected endocrine disrupting compounds in Iberian coastal areas and assessment of the environmental risk. Environmental Pollution, 249, 767– 775. https://doi.org/10.1016/j.envpol.2019.03.107spa
dcterms.bibliographicCitationSayed, A. E. D. H., Kataoka, C., Oda, S., Kashiwada, S., & Mitani, H. (2018). Sensitivity of medaka (Oryzias latipes) to 4-nonylphenol subacute exposure; Erythrocyte alterations and apoptosis. Environmental Toxicology and Pharmacology, 58, 98– 104. https://doi.org/10.1016/j.etap.2017.12.023spa
dcterms.bibliographicCitationSchwaiger, J., Mallow, U., Ferling, H., Knoerr, S., Braunbeck, T., Kalbfus, W., & Negele, R. D. (2002). How estrogenic is nonylphenol. Aquatic Toxicology, 59(3–4), 177– 189.spa
dcterms.bibliographicCitationSchwaiger, J., Spieser, O. H., Bauer, C., Ferling, H., Mallow, U., Kalbfus, W., & Negele, R. D. (2000). Chronic toxicity of nonylphenol and ethinylestradiol: Haematological and histopathological effects in juvenile common carp (Cyprinus carpio). Aquatic Toxicology, 51(1), 69– 78. https://doi.org/10.1016/S0166-445X(00)00098-9spa
dcterms.bibliographicCitationShelley, L. K., Ross, P. S., Miller, K. M., Kaukinen, K. H., & Kennedy, C. J. (2012). Toxicity of atrazine and nonylphenol in juvenile rainbow trout (Oncorhynchus mykiss): Effects on general health, disease susceptibility and gene expression. Aquatic Toxicology, 124–125, 217– 226. https://doi.org/10.1016/j.aquatox.2012.08.007spa
dcterms.bibliographicCitationSoares, A., Guieysse, B., Jefferson, B., Cartmell, E., & Lester, J. N. (2008). Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters. Environment International, 34(7), 1033– 1049. https://doi.org/10.1016/j.envint.2008.01.004spa
dcterms.bibliographicCitationSolé, M., & Sanchez-Hernandez, J. C. (2018). Elucidating the importance of mussel carboxylesterase activity as exposure biomarker of environmental contaminants of current concern: An in vitro study. Ecological Indicators, 85, 432– 439. https://doi.org/10.1016/j.ecolind.2017.10.046spa
dcterms.bibliographicCitationSoto, A. M., Sonnenschein, C., Chung, K. L., Fernandez, M. F., Olea, N., & Serrano, F. O. (1995). The E-SCREEN assay as a tool to identify estrogens: An update on estrogenic environmental pollutants. Environmental Health Perspectives, 103(suppl 7), 113– 122. https://doi.org/10.1289/ehp.95103s7113spa
dcterms.bibliographicCitationSprague, B. L., Trentham-Dietz, A., Hedman, C. J., Wang, J., Hemming, J. D., Hampton, J. M., Buist, D. S., Aiello Bowles, E. J., Sisney, G. S., & Burnside, E. S. (2013). Circulating serum xenoestrogens and mammographic breast density. Breast Cancer Research, 15(3), R45. https://doi.org/10.1186/bcr3432spa
dcterms.bibliographicCitationSturm, A., Cravedi, J. P., Perdu, E., Baradat, M., & Segner, H. (2001). Effects of prochloraz and nonylphenol diethoxylate on hepatic biotransformation enzymes in trout: A comparative in vitro/in vivo-assessment using cultured hepatocytes. Aquatic Toxicology, 53(3–4), 229– 245. https://doi.org/10.1016/S0166-445X(01)00168-0spa
dcterms.bibliographicCitationTato, T., Salgueiro-González, N., León, V. M., González, S., & Beiras, R. (2018). Ecotoxicological evaluation of the risk posed by bisphenol A, triclosan, and 4-nonylphenol in coastal waters using early life stages of marine organisms (Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Acartia clausi). Environmental Pollution, 232, 173– 182. https://doi.org/10.1016/j.envpol.2017.09.031spa
dcterms.bibliographicCitationU.S. Environmental Protection Agency. (2021). Contaminant candidate list 4—CCL 4. https://www.epa.gov/ccl/contaminant-candidate-list-4-ccl-4-0spa
dcterms.bibliographicCitationvan den Belt, K., Berckmans, P., Vangenechten, C., Verheyen, R., & Witters, H. (2004). Comparative study on the in vitro/in vivo estrogenic potencies of 17β-estradiol, estrone, 17α-ethynylestradiol and nonylphenol. Aquatic Toxicology, 66(2), 183– 195. https://doi.org/10.1016/j.aquatox.2003.09.004spa
dcterms.bibliographicCitationVidal-Liñán, L., Bellas, J., Salgueiro-González, N., Muniategui, S., & Beiras, R. (2015). Bioaccumulation of 4-nonylphenol and effects on biomarkers, acetylcholinesterase, glutathione-S-transferase and glutathione peroxidase, in Mytilus galloprovincialis mussel gills. Environmental Pollution, 200, 133– 139. https://doi.org/10.1016/j.envpol.2015.02.012spa
dcterms.bibliographicCitationYang, W., Gao, X., Wu, Y., Wan, L., Tan, L., Yuan, S., Ding, H., & Zhang, W. (2020). The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa. Ecotoxicology and Environmental Safety, 195, 110484. https://doi.org/10.1016/j.ecoenv.2020.110484spa
dcterms.bibliographicCitationYu, J., Yang, X., Yang, X., Yang, M., Wang, P., Yang, Y., Yang, J., Li, W., & Xu, J. (2018). Nonylphenol aggravates non-alcoholic fatty liver disease in high sucrose-high fat diet-treated rats. Scientific Reports, 8(1), 3232. https://doi.org/10.1038/s41598-018-21725-yspa
dcterms.bibliographicCitationWatanabe, H., Horie, Y., Takanobu, H., Koshio, M., Flynn, K., Iguchi, T., & Tatarazako, N. (2017). Medaka Extended One-Generation Reproduction Test (MEOGRT) evaluating 4-nonylphenol. Environmental Toxicology and Chemistry, 36(12), 3254– 3266. https://doi.org/10.1002/etc.3895spa
dcterms.bibliographicCitationZaytseva, T. B., Zinoveva, S. V., Kuzikova, I. L., Russu, A. D., Chugunova, M. V., & Medvedeva, N. G. (2020). Impact of nonylphenols on biological activity of loamy soddy-podzolic soil. Eurasian Soil Science, 53(5), 661– 667. https://doi.org/10.1134/S1064229320050178spa
dcterms.bibliographicCitationZein, M. A., McElmurry, S. P., Kashian, D. R., Savolainen, P. T., & Pitts, D. K. (2015). Toxic effects of combined stressors on Daphnia pulex: Interactions between diazinon, 4-nonylphenol, and wastewater effluent. Environmental Toxicology and Chemistry, 34(5), 1145– 1153. https://doi.org/10.1002/etc.2908spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.subject.keywordsEndocrine disruptorspa
dc.subject.keywordsEnvironmental pollutantspa
dc.subject.keywordsNonionic surfactantsspa
dc.subject.keywordsNeurotoxicspa
dc.subject.keywordsToxicologyspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_dcae04bcspa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.publisher.disciplineIngeniería Ambientalspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.