Mostrar el registro sencillo del ítem
Studies of Endocrine Disruptors: Nonylphenol and Isomers in Biological Models
dc.contributor.author | De la Parra Guerra, Ana | |
dc.contributor.author | Acevedo Barrios, Rosa | |
dc.coverage.spatial | Colombia, Cartagena de Indias | |
dc.date.accessioned | 2023-06-01T14:02:20Z | |
dc.date.available | 2023-06-01T14:02:20Z | |
dc.date.issued | 2023-04-14 | |
dc.date.submitted | 2023-06-01 | |
dc.identifier.citation | De la Parra‐Guerra, A. C., & Acevedo‐Barrios, R. Studies of endocrine disruptors: nonylphenol and isomers in biological models. Environmental Toxicology and Chemistry. 0 (0), 1-12. https://doi.org/10.1002/etc.5633 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/11971 | |
dc.description.abstract | Abstract Certain emerging pollutants are among the most widely used chemicals globally, causing widespread concern in relation to their use in products devoted to cleaniness and asepsis. Nonylphenol ethoxylate (NPEOn) is one such contaminant, along with its degradation product, nonylphenol, an active ingredient presents in nonionic surfactants used as herbicides, cosmetics, paints, plastics, disinfectants, and detergents. These chemicals and their metabolites are commonly found in environmental matrices. Nonylphenol and NPEOn, used, are particularly concerning, given their role as endocrine disruptors chemical and possible neurotoxic effects recorded in several biological models, primarily aquatic organisms. Limiting and detecting these compounds remain of paramount importance. The objective of the present review was to evaluate the toxic effects of nonylphenol and NPEOn in different biological models. Environ Toxicol Chem 2023;00:1–12. © 2023 SETAC | spa |
dc.description.sponsorship | Universidad de la Costa/Universidad Tecnológica de Bolívar | spa |
dc.format.extent | 12 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.source | Environmental Toxicology and Chemistry - Vol. 42 No. 6 (2023) | spa |
dc.title | Studies of Endocrine Disruptors: Nonylphenol and Isomers in Biological Models | spa |
dcterms.bibliographicCitation | Abdel Rahman, A. N., Mahmoud, S. M., Khamis, T., Rasheed, N., Mohamed, D. I., Ghanem, R., Mansour, D. M., Ismail, T. A., & Mahboub, H. H. (2022). Palliative effect of dietary common sage leaves against toxic impacts of nonylphenol in mirror carp (Cyprinus carpio var specularis): Growth, gene expression, immune-antioxidant status, and histopathological alterations. Aquaculture Reports, 25, 101200. https://doi.org/10.1016/j.aqrep.2022.101200 | spa |
dcterms.bibliographicCitation | Abdulrahman, I., Jamal Mamdoh, T., & Sathianeson, S. (2022). The anti-settlement activity of extracts of marine bacteria associated with soft corals against barnacle larvae. Egyptian Journal of Aquatic Biology and Fisheries, 26(3), 885– 900. https://doi.org/10.21608/ejabf.2022.248212 | spa |
dcterms.bibliographicCitation | Acir, I. H., & Guenther, K. (2018). Endocrine-disrupting metabolites of alkylphenol ethoxylates—A critical review of analytical methods, environmental occurrences, toxicity, and regulation. Science of the Total Environment, 635, 1530– 1546. https://doi.org/10.1016/j.scitotenv.2018.04.079 | spa |
dcterms.bibliographicCitation | Amaninejad, P., Hosseinzadeh Sahafi, H., Soltani, M., & Hosseini Shekarabi, S. P. (2018). Endocrine disrupting effects of 4-nonylphenol on plasma vitellogenin, reproductive system and histology in koi carp (Cyprinus carpio). International Aquatic Research; A Journal of Science and Its Applications, 10(3), 263– 274. https://doi.org/10.1007/s40071-018-0203-8 | spa |
dcterms.bibliographicCitation | Aronzon, C. M. (2012). Evaluación de la toxicidad de los contaminantes cobre, nonilfenol y diazinón sobre embriones y larvas de Rhinella (Bufo) arenarum [Embryo-larval toxicity of pollutants, copper, nonylphenol and dizinon on Rhinella (Bufo) arenarum]. Doctoral dissertation, Universidad de Buenos Aires. http://hdl.handle.net/20.500.12110/tesis_n5340_Aronzon | spa |
dcterms.bibliographicCitation | Atienzar, F. A., Billinghurst, Z., & Depledge, M. H. (2002). 4-n-Nonylphenol and 17-β estradiol may induce common DNA effects in developing barnacle larvae. Environmental Pollution, 120(3), 735– 738. https://doi.org/10.1016/S0269-7491(02)00184-7 | spa |
dcterms.bibliographicCitation | Bednářová, A., Kropf, M., & Krishnan, N. (2020). The surfactant polyethoxylated tallowamine (POEA) reduces lifespan and inhibits fecundity in Drosophila melanogaster–In vivo and in vitro study. Ecotoxicology and Environmental Safety, 188, 109883. https://doi.org/10.1016/j.ecoenv.2019.109883 | spa |
dcterms.bibliographicCitation | Bhandari, G., Bagheri, A. R., Bhatt, P., & Bilal, M. (2021). Occurrence, potential ecological risks, and degradation of endocrine disrupter, nonylphenol, from the aqueous environment. Chemosphere, 275, 130013. https://doi.org/10.1016/j.chemosphere.2021.130013 | spa |
dcterms.bibliographicCitation | Billinghurst, Z., Clare, A. S., Fileman, T., Mcevoy, J., Readman, J., & Depledge, M. H. (1998). Inhibition of barnacle settlement by the environmental oestrogen 4-nonylphenol and the natural oestrogen 17β oestradiol. Marine Pollution Bulletin, 36(10), 833– 839. https://doi.org/10.1016/S0025-326X(98)00074-5 | spa |
dcterms.bibliographicCitation | Government of Canada. (1999). Canadian Environmental Protection Act, 1999. https://laws-lois.justice.gc.ca/eng/acts/c-15.31/ | spa |
dcterms.bibliographicCitation | Careghini, A., Mastorgio, A. F., Saponaro, S., & Sezenna, E. (2015). Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: A review. Environmental Science and Pollution Research, 22(8), 5711– 5741. https://doi.org/10.1007/s11356-014-3974-5 | spa |
dcterms.bibliographicCitation | Chen, W., Pan, S., Cheng, H., Sweetman, A. J., Zhang, H., & Jones, K. C. (2018). Diffusive gradients in thin-films (DGT) for in situ sampling of selected endocrine disrupting chemicals (EDCs) in waters. Water Research, 137, 211– 219. https://doi.org/10.1016/j.watres.2018.03.029 | spa |
dcterms.bibliographicCitation | Chłopecka, M., Mendel, M., Dziekan, N., & Karlik, W. (2017). The effect of glyphosate-based herbicide Roundup and its co-formulant, POEA, on the motoric activity of rat intestine—In vitro study. Environmental Toxicology and Pharmacology, 49, 156– 162. https://doi.org/10.1016/j.etap.2016.12.010 | spa |
dcterms.bibliographicCitation | Conselho Nacional Do Meio Ambiente. (2005). Resolução CONAMA no 357, de 17 de março de 2005—4a Câmara—Meio Ambiente e Patrimônio Cultural. https://www.mpf.mp.br/atuacao-tematica/ccr4/dados-da-atuacao/projetos/qualidade-da-agua/legislacao/resolucoes/resolucao-conama-no-357-de-17-de-marco-de-2005/view | spa |
dcterms.bibliographicCitation | Crago, J., Tran, K., Budicin, A., Schreiber, B., Lavado, R., & Schlenk, D. (2015). Exploring the impacts of two separate mixtures of pesticide and surfactants on estrogenic activity in male fathead minnows and rainbow trout. Archives of Environmental Contamination and Toxicology, 68(2), 362– 370. https://doi.org/10.1007/s00244-014-0098-3 | spa |
dcterms.bibliographicCitation | De la Parra-Guerra, A., & Olivero-Verbel, J. (2020). Toxicity of nonylphenol and nonylphenol ethoxylate on Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 187, 109709. https://doi.org/10.1016/j.ecoenv.2019.109709 | spa |
dcterms.bibliographicCitation | De la Parra-Guerra, A., Stürzenbaum, S., & Olivero-Verbel, J. (2020). Intergenerational toxicity of nonylphenol ethoxylate (NP-9) in Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 197, 110588. https://doi.org/10.1016/j.ecoenv.2020.110588 | spa |
dcterms.bibliographicCitation | Ding, J., Cheng, Y., Hua, Z., Yuan, C., & Wang, X. (2019). The effect of dissolved organic matter (DOM) on the release and distribution of endocrine-disrupting chemicals (EDCs) from sediment under hydrodynamic forces, A case study of bisphenol A (BPA) and nonylphenol (NP). International Journal of Environmental Research and Public Health, 16(10), 1724. https://doi.org/10.3390/ijerph16101724 | spa |
dcterms.bibliographicCitation | Domene, X., Ramírez, W., Solà, L., Alcañiz, J. M., & Andrés, P. (2009). Soil pollution by nonylphenol and nonylphenol ethoxylates and their effects to plants and invertebrates. Journal of Soils and Sediments, 9(6), 555– 567. https://doi.org/10.1007/s11368-009-0117-6 | spa |
dcterms.bibliographicCitation | Düring, R.-A., Krahe, S., & Gäth, S. (2002). Sorption behavior of nonylphenol in terrestrial oils. Environmental Science & Technology, 36(19), 4052– 4057. https://doi.org/10.1021/es0103389 | spa |
dcterms.bibliographicCitation | Dwivedi, S., D'Souza, L. C., Shetty, N. G., Raghu, S. V., & Sharma, A. (2022). Hsp27, a potential EcR target, protects nonylphenol-induced cellular and organismal toxicity in Drosophila melanogaster. Environmental Pollution, 293, 118484. https://doi.org/10.1016/J.ENVPOL.2021.118484 | spa |
dcterms.bibliographicCitation | European Commission. (2002). European Union Risk Assessment Report 4-nonylphenol (branched) and nonylphenol (Vol. 10, Issue EUR 20387 EN). European Commission—Joint Research Centre. | spa |
dcterms.bibliographicCitation | Fabbri, R., Montagna, M., Balbi, T., Raffo, E., Palumbo, F., & Canesi, L. (2014). Adaptation of the bivalve embryotoxicity assay for the high throughput screening of emerging contaminants in Mytilus galloprovincialis. Marine Environmental Research, 99, 1– 8. https://doi.org/10.1016/j.marenvres.2014.05.007 | spa |
dcterms.bibliographicCitation | Flores-Nunes, F., Mattos, J. J., Zacchi, F. L., Serrano, M. A. S., Piazza, C. E., Sasaki, S. T., Taniguchi, S., Bicego, M. C., Melo, C. M. R., & Bainy, A. C. D. (2015). Effect of linear alkylbenzene mixtures and sanitary sewage in biochemical and molecular responses in Pacific oyster Crassostrea gigas. Environmental Science and Pollution Research, 22(22), 17386– 17396. https://doi.org/10.1007/s11356-015-4486-7 | spa |
dcterms.bibliographicCitation | Gao, D., Liu, X., Junaid, M., Liao, H., Chen, G., Wu, Y., & Wang, J. (2022). Toxicological impacts of micro(nano)plastics in the benthic environment. Science of the Total Environment, 836, 155620. https://doi.org/10.1016/j.scitotenv.2022.155620 | spa |
dcterms.bibliographicCitation | Gheorghe, S., Stan, M. S., Mitroi, D. N., Staicu, A. C., Cicirma, M., Lucaciu, I. E., Nita-Lazar, M., & Dinischiotu, A. (2022). Oxidative stress and histopathological changes in gills and kidneys of Cyprinus carpio following exposure to benzethonium chloride, a cationic surfactant. Toxics, 10(5), 227. https://doi.org/10.3390/toxics10050227 | spa |
dcterms.bibliographicCitation | Guéguen, M., Amiard, J.-C., Arnich, N., Badot, P.-M., Claisse, D., Guérin, T., & Vernoux, J.-P. (2011). Shellfish and residual chemical contaminants: Hazards, monitoring, and health risk assessment along French coasts. Reviews of Environmental Contamination and Toxicology, 213, 55– 111. https://doi.org/10.1007/978-1-4419-9860-6_3 | spa |
dcterms.bibliographicCitation | Guenther, K., Heinke, V., Thiele, B., Kleist, E., Prast, H., & Raecker, T. (2002). Endocrine disrupting nonylphenols are ubiquitous in food. Environmental Science & Technology, 36(8), 1676– 1680. https://doi.org/10.1021/es010199v | spa |
dcterms.bibliographicCitation | Hart, C. E., Lauth, M. J., Hunter, C. S., Krasny, B. R., & Hardy, K. M. (2016). Effect of 4-nonylphenol on the immune response of the Pacific oyster Crassostrea gigas following bacterial infection with Vibrio campbellii. Fish & Shellfish Immunology, 58, 449– 461. https://doi.org/10.1016/j.fsi.2016.09.054 | spa |
dcterms.bibliographicCitation | Hong, Y., Feng, C., Yan, Z., Wang, Y., Liu, D., Liao, W., & Bai, Y. (2020). Nonylphenol occurrence, distribution, toxicity and analytical methods in freshwater. Environmental Chemistry Letters, 18(6), 2095– 2106. https://doi.org/10.1007/s10311-020-01060-3 | spa |
dcterms.bibliographicCitation | Jacobsen, A. M., Mortensen, G. K., & Hansen, H. C. B. (2004). Degradation and mobility of linear alkylbenzene sulfonate and nonylphenol in sludge-amended soil. Journal of Environmental Quality, 33(1), 232– 240. https://doi.org/10.2134/jeq.2004.2320 | spa |
dcterms.bibliographicCitation | Kawashima, Y., Onishi, Y., Tatarazako, N., Yamamoto, H., Koshio, M., Oka, T., Horie, Y., Watanabe, H., Nakamoto, T., Yamamoto, J., Ishikawa, H., Sato, T., Yamazaki, K., & Iguchi, T. (2022). Summary of seventeen chemicals evaluated by OECD TG229 using Japanese medaka, Oryzias latipes in EXTEND 2016. Journal of Applied Toxicology, 42(5), 750– 777. https://doi.org/10.1002/jat.4255 | spa |
dcterms.bibliographicCitation | Kwack, S. J., Kwon, O., Kim, H. S., Kim, S. S., Kim, S. H., Sohn, K. H., Da Lee, R., Park, C. H., Jeung, E. B., & An, B. S. (2002). Comparative evaluation of alkylphenolic compounds on estrogenic activity in vitro and in vivo. Journal Toxicology and Environmental Health Part A, 65, 419– 431. https://doi.org/10.1080/15287390252808082 | spa |
dcterms.bibliographicCitation | Kwon, Y. S., Jung, J. W., Kim, Y. J., Park, C. B., Shon, J. C., Kim, J. H., & Seo, J. S. (2020). Proteomic analysis of whole-body responses in medaka (Oryzias latipes) exposed to benzalkonium chloride. Journal of Environmental Science and Health, Part A, 55(12), 1387– 1397. https://doi.org/10.1080/10934529.2020.1796117 | spa |
dcterms.bibliographicCitation | Lahnsteiner, F., Berger, B., Kletzl, M., & Weismann, T. (2005). Effect of bisphenol A on maturation and quality of semen and eggs in the brown trout, Salmo trutta f. fario. Aquatic Toxicology, 75(3), 213– 224. https://doi.org/10.1016/j.aquatox.2005.08.004 | spa |
dcterms.bibliographicCitation | le Gac, F., Thomas, J. L., Mourot, B., & Loir, M. (2001). In vivo and in vitro effects of prochloraz and nonylphenol ethoxylates on trout spermatogenesis. Aquatic Toxicology, 53(3–4), 187– 200. https://doi.org/10.1016/S0166-445X(01)00165-5 | spa |
dcterms.bibliographicCitation | Li, C., Jin, F., & Snyder, S. A. (2018). Recent advancements and future trends in analysis of nonylphenol ethoxylates and their degradation product nonylphenol in food and environment. TrAC, Trends in Analytical Chemistry, 107, 78– 90. https://doi.org/10.1016/j.trac.2018.07.021 | spa |
dcterms.bibliographicCitation | Lu, J., Wu, J., Stoffella, P. J., & Wilson, P. C. (2013). Analysis of bisphenol A, nonylphenol, and natural estrogens in vegetables and fruits using gas chromatography—Tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 61(1), 84– 89. https://doi.org/10.1021/jf304971k | spa |
dcterms.bibliographicCitation | Maggioni, S., Balaguer, P., Chiozzotto, C., & Benfenati, E. (2013). Screening of endocrine-disrupting phenols, herbicides, steroid estrogens, and estrogenicity in drinking water from the waterworks of 35 Italian cities and from PET-bottled mineral water. Environmental Science and Pollution Research, 20(3), 1649– 1660. https://doi.org/10.1007/s11356-012-1075-x | spa |
dcterms.bibliographicCitation | Marin, M. G., Rigato, S., Ricciardi, F., & Matozzo, V. (2008). Lethal and estrogenic effects of 4-nonylphenol in the cockle Cerastoderma glaucum. Marine Pollution Bulletin, 57(6–12), 552– 558. https://doi.org/10.1016/j.marpolbul.2008.01.041 | spa |
dcterms.bibliographicCitation | Martínez-Zapata, M., Aristizábal, C., & Peñuela, G. (2013). Photodegradation of the endocrine-disrupting chemicals 4n-nonylphenol and triclosan by simulated solar UV irradiation in aqueous solutions with Fe (III) and in the absence/presence of humic acids. Journal of Photochemistry and Photobiology A, 251, 41– 49. https://doi.org/10.1016/j.jphotochem.2012.10.009 | spa |
dcterms.bibliographicCitation | Matozzo, V., Rova, G., Ricciardi, F., & Marin, M. G. (2008). Immunotoxicity of the xenoestrogen 4-nonylphenol to the cockle Cerastoderma glaucum. Marine Pollution Bulletin, 57(6), 453– 459. https://doi.org/10.1016/j.marpolbul.2008.02.019 | spa |
dcterms.bibliographicCitation | Mesnage, R., Bernay, B., & Séralini, G. E. (2013). Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology, 313(2-3), 122– 128. https://doi.org/10.1016/j.tox.2012.09.006 | spa |
dcterms.bibliographicCitation | Mona, M. H., El-Khodary, G. M., Abdel-Halim, K. Y., Omran, N. E., Abd El-Aziz, K. K., & El-Saidy, S. A. (2022). Histopathological alterations induced by marine environmental pollutants on the bivalve Cerastoderma glaucum (Bruguière 1789) from Temsah Lake, Suez Canal, Egypt. Environmental Science and Pollution Research, 29(7), 9971– 9989. https://doi.org/10.1007/s11356-021-14966-4 | spa |
dcterms.bibliographicCitation | Mueller, G. C., & Kim, U.-H. (1978). Displacement of estradiol from estrogen receptors by simple alkyl phenols*. Endocrinology, 102(5), 1429– 1435. https://doi.org/10.1210/endo-102-5-1429 | spa |
dcterms.bibliographicCitation | Mukherjee, U., Samanta, A., Biswas, S., Ghosh, S., Das, S., Banerjee, S., & Maitra, S. (2022). Chronic exposure to nonylphenol induces oxidative stress and liver damage in male zebrafish (Danio rerio): Mechanistic insight into cellular energy sensors, lipid accumulation and immune modulation. Chemico-Biological Interactions, 351, 109762. https://doi.org/10.1016/j.cbi.2021.109762 | spa |
dcterms.bibliographicCitation | Müller, A.-K., Markert, N., Leser, K., Kämpfer, D., Schiwy, S., Riegraf, C., Buchinger, S., Gan, L., Abdallah, A. T., Denecke, B., Segner, H., Brinkmann, M., Crawford, S. E., & Hollert, H. (2021). Bioavailability and impacts of estrogenic compounds from suspended sediment on rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 231, 105719. https://doi.org/10.1016/j.aquatox.2020.105719 | spa |
dcterms.bibliographicCitation | Nice, H. E. (2005). Sperm motility in the Pacific oyster (Crassostrea gigas) is affected by nonylphenol. Marine Pollution Bulletin, 50(12), 1668– 1674. https://doi.org/10.1016/j.marpolbul.2005.07.006 | spa |
dcterms.bibliographicCitation | Nice, H., Morritt, D., Crane, M., & Thorndyke, M. (2003). Long-term and transgenerational effects of nonylphenol exposure at a key stage in the development of Crassostrea gigas. Possible endocrine disruption? Marine Ecology Progress Series, 256, 293– 300. https://doi.org/10.3354/meps256293 | spa |
dcterms.bibliographicCitation | Niu, Y., Zhang, J., Duan, H., Wu, Y., & Shao, B. (2015). Bisphenol A and nonylphenol in foodstuffs: Chinese dietary exposure from the 2007 total diet study and infant health risk from formulas. Food Chemistry, 167, 320– 325. https://doi.org/10.1016/j.foodchem.2014.06.115 | spa |
dcterms.bibliographicCitation | Noorimotlagh, Z., Mirzaee, S. A., Martinez, S. S., Rachoń, D., Hoseinzadeh, M., & Jaafarzadeh, N. (2020). Environmental exposure to nonylphenol and cancer progression risk—A systematic review. Environmental Research, 184, 109263. https://doi.org/10.1016/j.envres.2020.109263 | spa |
dcterms.bibliographicCitation | Pickford, K. A., Thomas-Jones, R. E., Wheals, B., Tyler, C. R., & Sumpter, J. P. (2003). Route of exposure affects the oestrogenic response of fish to 4-tert-nonylphenol. Aquatic Toxicology, 65(3), 267– 279. https://doi.org/10.1016/S0166-445X(03)00149-8 | spa |
dcterms.bibliographicCitation | Qian, K., Jiang, X., Sun, L., Zhou, G., Ge, H., Fang, X., Xiao, L., & Wu, Q. (2018). Effect of montmorillonite on 4-Nonylphenol enrichment in zebrafish. International Journal of Environmental Research and Public Health, 15(6), 1217. https://doi.org/10.3390/ijerph15061217 | spa |
dcterms.bibliographicCitation | Quesada-Calderón, S., Bacigalupe, L. D., Toro-Vélez, A. F., Madera-Parra, C. A., Peña-Varón, M. R., & Cárdenas-Henao, H. (2017). The multigenerational effects of water contamination and endocrine disrupting chemicals on the fitness of Drosophila melanogaster. Ecology and Evolution, 7(16), 6519– 6526. https://doi.org/10.1002/ece3.3172 | spa |
dcterms.bibliographicCitation | Raecker, T., Thiele, B., Boehme, R. M., & Guenther, K. (2011). Endocrine disrupting nonyl- and octylphenol in infant food in Germany: Considerable daily intake of nonylphenol for babies. Chemosphere, 82(11), 1533– 1540. https://doi.org/10.1016/j.chemosphere.2010.11.065 | spa |
dcterms.bibliographicCitation | Ricciardi, F., Matozzo, V., & Marin, M. G. (2008). Effects of 4-nonylphenol exposure in mussels (Mytilus galloprovincialis) and crabs (Carcinus aestuarii) with particular emphasis on vitellogenin induction. Marine Pollution Bulletin, 57(6–12), 365– 372. https://doi.org/10.1016/j.marpolbul.2008.02.023 | spa |
dcterms.bibliographicCitation | Ringbeck, B., Bury, D., Hayen, H., Weiss, T., Brüning, T., & Koch, H. M. (2021). Determination of specific urinary nonylphenol metabolites by online-SPE-LC-MS/MS as novel human exposure biomarkers. Journal of Chromatography B, 1177, 122794. https://doi.org/10.1016/j.jchromb.2021.122794 | spa |
dcterms.bibliographicCitation | Ríos, F. (2016). Environmental behavior of commercial surfactants: Biodegradability, toxicity and ozonation. Doctoral Thesis, University of Granada. | spa |
dcterms.bibliographicCitation | Sadmani, A. A., Andrews, R. C., & Bagley, D. M. (2014). Nanofiltration of pharmaceutically active and endocrine disrupting compounds as a function of compound interactions with DOM fractions and cations in natural water. Separation and Purification Technology, 122, 462– 471. https://doi.org/10.1016/j.seppur.2013.12.003 | spa |
dcterms.bibliographicCitation | Salgueiro-González, N., Campillo, J. A., Viñas, L., Beiras, R., López-Mahía, P., & Muniategui-Lorenzo, S. (2019). Occurrence of selected endocrine disrupting compounds in Iberian coastal areas and assessment of the environmental risk. Environmental Pollution, 249, 767– 775. https://doi.org/10.1016/j.envpol.2019.03.107 | spa |
dcterms.bibliographicCitation | Sayed, A. E. D. H., Kataoka, C., Oda, S., Kashiwada, S., & Mitani, H. (2018). Sensitivity of medaka (Oryzias latipes) to 4-nonylphenol subacute exposure; Erythrocyte alterations and apoptosis. Environmental Toxicology and Pharmacology, 58, 98– 104. https://doi.org/10.1016/j.etap.2017.12.023 | spa |
dcterms.bibliographicCitation | Schwaiger, J., Mallow, U., Ferling, H., Knoerr, S., Braunbeck, T., Kalbfus, W., & Negele, R. D. (2002). How estrogenic is nonylphenol. Aquatic Toxicology, 59(3–4), 177– 189. | spa |
dcterms.bibliographicCitation | Schwaiger, J., Spieser, O. H., Bauer, C., Ferling, H., Mallow, U., Kalbfus, W., & Negele, R. D. (2000). Chronic toxicity of nonylphenol and ethinylestradiol: Haematological and histopathological effects in juvenile common carp (Cyprinus carpio). Aquatic Toxicology, 51(1), 69– 78. https://doi.org/10.1016/S0166-445X(00)00098-9 | spa |
dcterms.bibliographicCitation | Shelley, L. K., Ross, P. S., Miller, K. M., Kaukinen, K. H., & Kennedy, C. J. (2012). Toxicity of atrazine and nonylphenol in juvenile rainbow trout (Oncorhynchus mykiss): Effects on general health, disease susceptibility and gene expression. Aquatic Toxicology, 124–125, 217– 226. https://doi.org/10.1016/j.aquatox.2012.08.007 | spa |
dcterms.bibliographicCitation | Soares, A., Guieysse, B., Jefferson, B., Cartmell, E., & Lester, J. N. (2008). Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters. Environment International, 34(7), 1033– 1049. https://doi.org/10.1016/j.envint.2008.01.004 | spa |
dcterms.bibliographicCitation | Solé, M., & Sanchez-Hernandez, J. C. (2018). Elucidating the importance of mussel carboxylesterase activity as exposure biomarker of environmental contaminants of current concern: An in vitro study. Ecological Indicators, 85, 432– 439. https://doi.org/10.1016/j.ecolind.2017.10.046 | spa |
dcterms.bibliographicCitation | Soto, A. M., Sonnenschein, C., Chung, K. L., Fernandez, M. F., Olea, N., & Serrano, F. O. (1995). The E-SCREEN assay as a tool to identify estrogens: An update on estrogenic environmental pollutants. Environmental Health Perspectives, 103(suppl 7), 113– 122. https://doi.org/10.1289/ehp.95103s7113 | spa |
dcterms.bibliographicCitation | Sprague, B. L., Trentham-Dietz, A., Hedman, C. J., Wang, J., Hemming, J. D., Hampton, J. M., Buist, D. S., Aiello Bowles, E. J., Sisney, G. S., & Burnside, E. S. (2013). Circulating serum xenoestrogens and mammographic breast density. Breast Cancer Research, 15(3), R45. https://doi.org/10.1186/bcr3432 | spa |
dcterms.bibliographicCitation | Sturm, A., Cravedi, J. P., Perdu, E., Baradat, M., & Segner, H. (2001). Effects of prochloraz and nonylphenol diethoxylate on hepatic biotransformation enzymes in trout: A comparative in vitro/in vivo-assessment using cultured hepatocytes. Aquatic Toxicology, 53(3–4), 229– 245. https://doi.org/10.1016/S0166-445X(01)00168-0 | spa |
dcterms.bibliographicCitation | Tato, T., Salgueiro-González, N., León, V. M., González, S., & Beiras, R. (2018). Ecotoxicological evaluation of the risk posed by bisphenol A, triclosan, and 4-nonylphenol in coastal waters using early life stages of marine organisms (Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Acartia clausi). Environmental Pollution, 232, 173– 182. https://doi.org/10.1016/j.envpol.2017.09.031 | spa |
dcterms.bibliographicCitation | U.S. Environmental Protection Agency. (2021). Contaminant candidate list 4—CCL 4. https://www.epa.gov/ccl/contaminant-candidate-list-4-ccl-4-0 | spa |
dcterms.bibliographicCitation | van den Belt, K., Berckmans, P., Vangenechten, C., Verheyen, R., & Witters, H. (2004). Comparative study on the in vitro/in vivo estrogenic potencies of 17β-estradiol, estrone, 17α-ethynylestradiol and nonylphenol. Aquatic Toxicology, 66(2), 183– 195. https://doi.org/10.1016/j.aquatox.2003.09.004 | spa |
dcterms.bibliographicCitation | Vidal-Liñán, L., Bellas, J., Salgueiro-González, N., Muniategui, S., & Beiras, R. (2015). Bioaccumulation of 4-nonylphenol and effects on biomarkers, acetylcholinesterase, glutathione-S-transferase and glutathione peroxidase, in Mytilus galloprovincialis mussel gills. Environmental Pollution, 200, 133– 139. https://doi.org/10.1016/j.envpol.2015.02.012 | spa |
dcterms.bibliographicCitation | Yang, W., Gao, X., Wu, Y., Wan, L., Tan, L., Yuan, S., Ding, H., & Zhang, W. (2020). The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa. Ecotoxicology and Environmental Safety, 195, 110484. https://doi.org/10.1016/j.ecoenv.2020.110484 | spa |
dcterms.bibliographicCitation | Yu, J., Yang, X., Yang, X., Yang, M., Wang, P., Yang, Y., Yang, J., Li, W., & Xu, J. (2018). Nonylphenol aggravates non-alcoholic fatty liver disease in high sucrose-high fat diet-treated rats. Scientific Reports, 8(1), 3232. https://doi.org/10.1038/s41598-018-21725-y | spa |
dcterms.bibliographicCitation | Watanabe, H., Horie, Y., Takanobu, H., Koshio, M., Flynn, K., Iguchi, T., & Tatarazako, N. (2017). Medaka Extended One-Generation Reproduction Test (MEOGRT) evaluating 4-nonylphenol. Environmental Toxicology and Chemistry, 36(12), 3254– 3266. https://doi.org/10.1002/etc.3895 | spa |
dcterms.bibliographicCitation | Zaytseva, T. B., Zinoveva, S. V., Kuzikova, I. L., Russu, A. D., Chugunova, M. V., & Medvedeva, N. G. (2020). Impact of nonylphenols on biological activity of loamy soddy-podzolic soil. Eurasian Soil Science, 53(5), 661– 667. https://doi.org/10.1134/S1064229320050178 | spa |
dcterms.bibliographicCitation | Zein, M. A., McElmurry, S. P., Kashian, D. R., Savolainen, P. T., & Pitts, D. K. (2015). Toxic effects of combined stressors on Daphnia pulex: Interactions between diazinon, 4-nonylphenol, and wastewater effluent. Environmental Toxicology and Chemistry, 34(5), 1145– 1153. https://doi.org/10.1002/etc.2908 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.subject.keywords | Endocrine disruptor | spa |
dc.subject.keywords | Environmental pollutant | spa |
dc.subject.keywords | Nonionic surfactants | spa |
dc.subject.keywords | Neurotoxic | spa |
dc.subject.keywords | Toxicology | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_dcae04bc | spa |
dc.audience | Público general | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.publisher.discipline | Ingeniería Ambiental | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.