Mostrar el registro sencillo del ítem

dc.contributor.authorPaternina-Verona, Duban
dc.contributor.authorCoronado-Hernandez, Oscar
dc.contributor.authorFlórez-Acero, Luis
dc.contributor.authorEspinoza-Román, Hector
dc.contributor.authorRamos M., Helena
dc.contributor.authorFuertes-Miquel, Vicente
dc.coverage.spatialEspaña, Valencia
dc.date.accessioned2023-05-31T15:42:55Z
dc.date.available2023-05-31T15:42:55Z
dc.date.issued2023-05-09
dc.date.submitted2022-12-12
dc.identifier.citationPaternina-Verona, D. A., Flórez-Acero, L. C., Coronado-Hernández, O. E., Espinoza-Román, H. G., Fuertes-Miquel, V. S., & Ramos, H. M. (2023). Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air. Urban Water Journal, 1-12.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/11957
dc.description.abstractThis study examines the impact of sub-atmospheric pressures in water pipelines during emptying manoeuvres with air admitted. Previous research has looked at this issue but has not studied it in detail. This research presents a two-dimensional model using the OpenFOAM software to analyse different emptying manoeuvres in a single pipeline with entrapped air. The results show the sensitivity of the ball valve opening percentage, which show that absolute pressure drop can reduce to 23% for each 5% of ball valve opening percentage. The influence of the size of the entrapped air pocket and different air-admission orifices was also analysed. The numerical model showed that the selection of the percentage and times of opening drainage valves in pipelines with air-admission orifices is crucial in controlling sub-atmospheric pressure conditions. Finally, this study demonstrates the ability of the two-dimensional model to show the sensitivity of hydraulic drainage parameters in pipelines with entrapped air.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceUrban Water Journalspa
dc.titleTwo-dimensional simulation of emptying manoeuvres in water pipelines with admitted airspa
dcterms.bibliographicCitationAguirre-Mendoza, A. M., S. Oyuela, H. G. Espinoza-Román, O. E. Coronado-Hernández, V. S. Fuertes-Miquel, and D. A. Paternina-Verona. 2021. “2D CFD Modeling of Rapid Water Filling with Air Valves Using OpenFoam.” Water 13 (21): 3104. doi:10.3390/w13213104.spa
dcterms.bibliographicCitationAguirre-Mendoza, A. M., D. A. Paternina-Verona, S. Oyuela, O. E. Coronado-Hernández, M. Besharat, V. S. Fuertes-Miquel, P. L. Iglesias-Rey, and H. M. Ramos. 2022. “Effects of Orifice Sizes for Uncontrolled Filling Processes in Water Pipelines.” Water 14 (6): 888. doi:10.3390/w14060888spa
dcterms.bibliographicCitationAmerican Water Works Association (AWWA). 2016. Air Release, Air/Vacuum Valves and Combination Air Valves (M51). American Water Works Association.spa
dcterms.bibliographicCitationBesharat, M., O. E. Coronado-Hernández, V. S. Fuertes-Miquel, M. T. Viseu, and H. M. Ramos. 2018. “Backflow Air and Pressure Analysis in Emptying a Pipeline Containing an Entrapped Air Pocket.” Urban Water Journal 15 (8): 769–779.spa
dcterms.bibliographicCitationBesharat, M., O. E. Coronado-Hernández, V. S. Fuertes-Miquel, M. T. Viseu, and H. M. Ramos. 2019. “Computational Fluid Dynamics for Sub-Atmospheric Pressure Analysis in Pipe Drainage.” Journal of Hydraulic Research 58 (4): 553–565. doi:10.1080/00221686.2019.1625819spa
dcterms.bibliographicCitationBesharat, M., R. Tarinejad, M. T. Aalami, and H. M. Ramos. 2016. “Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: Cfd and Experimental Analysis.” Water Resources Management 30 (8): 2687–2702. doi:10.1007/s11269-016-1310-1spa
dcterms.bibliographicCitationBlazek, J. 2015. Computational Fluid Dynamics: Principles and Applications. Oxford: Butterworth-Heinemannspa
dcterms.bibliographicCitationChan, S. N., J. Cong, and J. H. Lee. 2018. “3d Numerical Modeling of Geyser Formation by Release of Entrapped Air from Horizontal Pipe into Vertical Shaft.” Journal of Hydraulic Engineering 144 (3): 04017071. doi:10.1061/(ASCE)HY.1943-7900.0001416.spa
dcterms.bibliographicCitationCollIns, R. P., J. B. BoxAll, B. W. KARneY, B. Brunone, and S. Meniconi. 2012. “How Severe Can Transients Be After a Sudden Depressurization?” Journal-American Water Works Association 104 (4): E243–251. doi:10.5942/jawwa.2012.104.0055.spa
dcterms.bibliographicCitationCoronado-Hernández, Ó. E. 2019. “Transient phenomena during the emptying process of water in pressurized pipelines.” Ph. D. thesis, Universitat Politècnica de València, Valencia, Spain.spa
dcterms.bibliographicCitationCoronado-Hernández, O. E., D. M. Bonilla-Correa, A. Lovo, V. S. Fuertes-Miquel, G. Gatica, R. Linfati, and J. R. Coronado-Hernández. 2022. “An Implicit Formulation for Calculating Final Conditions in Drainage Maneuvers in Pressurized Water Installations.” Water 14 (21): 3364. doi:10.3390/w14213364spa
dcterms.bibliographicCitationCoronado-Hernández, O. E., V. S. Fuertes-Miquel, M. Besharat, and H. M. Ramos. 2017. “Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves.” Water 9 (2): 98. doi:10.3390/w9020098spa
dcterms.bibliographicCitationCoronado-Hernández, O. E., V. S. Fuertes-Miquel, M. Besharat, and H. M. Ramos. 2018. “Subatmospheric Pressure in a Water Draining Pipeline with an Air Pocket.” Urban Water Journal 15 (4): 346–352. doi:10.1080/1573062X.2018.1475578.spa
dcterms.bibliographicCitationFuertes-Miquel, V. S., O. E. Coronado-Hernández, P. L. Iglesias-Rey, and D. Mora-Meliá. 2019. “Transient Phenomena During the Emptying Process of a Single Pipe with Water–Air Interaction.” Journal of Hydraulic Research 57 (3): 318–326. doi:10.1080/00221686.2018.1492465.spa
dcterms.bibliographicCitationGreenshields, C., and H. Weller. 2022. Notes on Computational Fluid Dynamics: General Principles. Reading, UK: CFD Direct Ltd.spa
dcterms.bibliographicCitationGullberg, R. 2017. Computational Fluid Dynamics in Openfoam. Report TKP 4555.spa
dcterms.bibliographicCitationHirt, C. W., and B. D. Nichols. 1981. “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries.” Journal of Computational Physics 39 (1): 201–225. doi:10.1016/0021-9991(81)90145-5.spa
dcterms.bibliographicCitationHurtado-Misal, A. D., D. Hernández-Sanjuan, O. E. Coronado-Hernández, H. Espinoza-Roman, and V. S. Fuertes-Miquel. 2021. “Analysis of Sub-Atmospheric Pressures During Emptying of an Irregular Pipeline Without an Air Valve Using a 2D CFD Model.” Water 13 (18): 2526. doi:10.3390/w13182526.spa
dcterms.bibliographicCitationzquierdo, J., V. Fuertes, E. Cabrera, P. Iglesias, and J. Garcia-Serra. 1999. “Pipeline Start-Up with Entrapped Air.” Journal of Hydraulic Research 37 (5): 579–590. doi:10.1080/00221689909498518.spa
dcterms.bibliographicCitationJasak, H., and H. Weller. 1995. “Interface Tracking Capabilities of the Inter-Gamma Differencing Scheme.” In Department of Mechanical Engineering, 1–9. London: Imperial College of Science, Technology and Medicine.spa
dcterms.bibliographicCitationLaanearu, J., I. Annus, T. Koppel, A. Bergant, S. Vučković, Q. Hou, A. S. Tijsseling, A. Anderson, and J. M. Van’t Westende. 2012. “Emptying of Large-Scale Pipeline by Pressurized Air.” Journal of Hydraulic Engineering 138 (12): 1090–1100. doi:10.1061/(ASCE)HY.1943-7900.0000631.spa
dcterms.bibliographicCitationLaanearu, J., Q. Hou, I. Annus, and A. S. Tijsseling 2015. “Water-Column Mass Losses During the Emptying of a Large-Scale Pipeline by Pressurized Air.” Proceedings of the Estonian Academy of Sciences 64 (1): 8.spa
dcterms.bibliographicCitationLaunder, B. E., and D. B. Spalding. 1974. “The numerical computation of turbulent flows.“ Computer Methods in Applied Mechanics and Engineering 3 (2): 269–289. doi:10.1016/0045-7825(74)90029-2.spa
dcterms.bibliographicCitationLeón, A. S., M. S. Ghidaoui, A. R. Schmidt, and M. H. García. 2010. “A Robust Two-Equation Model for Transient-Mixed Flows.” Journal of Hydraulic Research 48 (1): 44–56. doi:10.1080/00221680903565911spa
dcterms.bibliographicCitationMartin, C. S. 1976. “Entrapped Air in Pipelines.” In Proceedings of the Second International Conference on Pressure Surges. London, UK.spa
dcterms.bibliographicCitationMartins, Nuno M. C., J. N. Delgado, H. M. Ramos, and D. I. Covas. 2017. “Maximum Transient Pressures in a Rapidly Filling Pipeline with Entrapped Air Using a CFD Model.” Journal of Hydraulic Research 55 (4): 506–519. doi:10.1080/00221686.2016.1275046.spa
dcterms.bibliographicCitationMartins, Nuno M.C., A. K. Soares, H. M. Ramos, and D. I. Covas. 2016. “Cfd Modeling of Transient Flow in Pressurized Pipes.” Computers & Fluids 126: 129–140. doi:10.1016/j.compfluid.2015.12.002.spa
dcterms.bibliographicCitationMavriplis, D. J. 1996. “Mesh Generation and Adaptivity for Complex Geometries and Flows.” In Handbook of Computational Fluid Mechanics, 417–459. London: Academic Press.spa
dcterms.bibliographicCitationMenter, F. R. 1994. “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications.” AIAA Journal 32 (8): 1598–1605. doi:10.2514/3.12149.spa
dcterms.bibliographicCitationMenter, F. R. 2009. “Review of the Shear-Stress Transport Turbulence Model Experience from an Industrial Perspective.” International Journal of Computational Fluid Dynamics 23 (4): 305–316. doi:10.1080/10618560902773387spa
dcterms.bibliographicCitationMenter, F., and T. Esch. 2001. “Elements of Industrial Heat Transfer Predictions.” In 16th Brazilian Congress of Mechanical Engineering (COBEM), Vol. 109, 650. Uberlândia: COBEM.spa
dcterms.bibliographicCitationPaternina-Verona, D. A., O. E. Coronado-Hernández, A. M. Aguirre-Mendoza, H. G. Espinoza-Román, and V. S. Fuertes-Miquel. 2023. “Three-Dimensional Simulation of Transient Flows During the Emptying of Pipes with Entrapped Air.” Journal of Hydraulic Engineering 149 (4): 04023007. doi:10.1061/JHEND8.HYENG-13302.spa
dcterms.bibliographicCitationPaternina-Verona, D. A., O. E. Coronado-Hernández, H. G. Espinoza-Román, M. Besharat, V. S. Fuertes-Miquel, and H. M. Ramos. 2022. “Three-Dimensional Analysis of Air-Admission Orifices in Pipelines During Hydraulic Drainage Events.” Sustainability 14 (21): 14600. doi:10.3390/su142114600spa
dcterms.bibliographicCitationRomero, G., V. S. Fuertes-Miquel, Ó. E. Coronado-Hernández, R. Ponz-Carcelén, and F. Biel-Sanchis. 2020. “Analysis of Hydraulic Transients During Pipeline Filling Processes with Air Valves in Large-Scale Installations.” Urban Water Journal 17 (6): 568–575. doi:10.1080/1573062X.2020.1800762spa
dcterms.bibliographicCitationSpalding, D. 1961. “A Single Formula for the “Law of the Wall”.” Journal of Applied Mechanics 28 (3): 455–458. doi:10.1115/1.3641728.spa
dcterms.bibliographicCitationTijsseling, A. S., Q. Hou, Z. Bozkuş, and J. Laanearu. 2016. “Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines.” Journal of Pressure Vessel Technology 138 (3): 3. doi:10.1115/1.4031508spa
dcterms.bibliographicCitationWang, J., and J. Vasconcelos. 2018. “Manhole Cover Displacement Caused by the Release of Entrapped Air Pockets.” Journal of Water Management Modeling. doi:10.14796/JWMM.C444spa
dcterms.bibliographicCitationWang, H., L. Zhou, D. Liu, B. Karney, P. Wang, L. Xia, J. Ma, and C. Xu. 2016. “Cfd Approach for Column Separation in Water Pipelines.” Journal of Hydraulic Engineering 142 (10): 04016036. doi:10.1061/(ASCE)HY.1943-7900.0001171spa
dcterms.bibliographicCitationWilcox, D. C. 1988. “Reassessment of the Scale-Determining Equation for Advanced Turbulence Models.” AIAA Journal 26 (11): 1299–1310. doi:10.2514/3.10041.spa
dcterms.bibliographicCitationZhou, L., D. Liu, and B. Karney. 2013. “Investigation of Hydraulic Transients of Two Entrapped Air Pockets in a Water Pipeline.” Journal of Hydraulic Engineering 139 (9): 949–959. doi:10.1061/(ASCE)HY.1943-7900.0000750.spa
dcterms.bibliographicCitationZhou, L., D.-Y. Liu, and C.-Q. Ou. 2011. “Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model.” Engineering Applications of Computational Fluid Mechanics 5 (1): 127–140. doi:10.1080/19942060.2011.11015357spa
dcterms.bibliographicCitationZhou, L., H. Wang, B. Karney, D. Liu, P. Wang, and S. Guo. 2018. “Dynamic Behavior of Entrapped Air Pocket in a Water Filling Pipeline.” Journal of Hydraulic Engineering 144 (8): 04018045. doi:10.1061/(ASCE)HY.1943-7900.0001491spa
datacite.rightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.subject.keywordsAir inflowspa
dc.subject.keywordsComputational fluid dynamicsspa
dc.subject.keywordsSub-atmospheric pressuresspa
dc.subject.keywordsEmptying processspa
dc.subject.keywordsInlet nozzle heightspa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.publisher.disciplineIngeniería Civilspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.