Mostrar el registro sencillo del ítem
Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air
dc.contributor.author | Paternina-Verona, Duban | |
dc.contributor.author | Coronado-Hernandez, Oscar | |
dc.contributor.author | Flórez-Acero, Luis | |
dc.contributor.author | Espinoza-Román, Hector | |
dc.contributor.author | Ramos M., Helena | |
dc.contributor.author | Fuertes-Miquel, Vicente | |
dc.coverage.spatial | España, Valencia | |
dc.date.accessioned | 2023-05-31T15:42:55Z | |
dc.date.available | 2023-05-31T15:42:55Z | |
dc.date.issued | 2023-05-09 | |
dc.date.submitted | 2022-12-12 | |
dc.identifier.citation | Paternina-Verona, D. A., Flórez-Acero, L. C., Coronado-Hernández, O. E., Espinoza-Román, H. G., Fuertes-Miquel, V. S., & Ramos, H. M. (2023). Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air. Urban Water Journal, 1-12. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/11957 | |
dc.description.abstract | This study examines the impact of sub-atmospheric pressures in water pipelines during emptying manoeuvres with air admitted. Previous research has looked at this issue but has not studied it in detail. This research presents a two-dimensional model using the OpenFOAM software to analyse different emptying manoeuvres in a single pipeline with entrapped air. The results show the sensitivity of the ball valve opening percentage, which show that absolute pressure drop can reduce to 23% for each 5% of ball valve opening percentage. The influence of the size of the entrapped air pocket and different air-admission orifices was also analysed. The numerical model showed that the selection of the percentage and times of opening drainage valves in pipelines with air-admission orifices is crucial in controlling sub-atmospheric pressure conditions. Finally, this study demonstrates the ability of the two-dimensional model to show the sensitivity of hydraulic drainage parameters in pipelines with entrapped air. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.source | Urban Water Journal | spa |
dc.title | Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air | spa |
dcterms.bibliographicCitation | Aguirre-Mendoza, A. M., S. Oyuela, H. G. Espinoza-Román, O. E. Coronado-Hernández, V. S. Fuertes-Miquel, and D. A. Paternina-Verona. 2021. “2D CFD Modeling of Rapid Water Filling with Air Valves Using OpenFoam.” Water 13 (21): 3104. doi:10.3390/w13213104. | spa |
dcterms.bibliographicCitation | Aguirre-Mendoza, A. M., D. A. Paternina-Verona, S. Oyuela, O. E. Coronado-Hernández, M. Besharat, V. S. Fuertes-Miquel, P. L. Iglesias-Rey, and H. M. Ramos. 2022. “Effects of Orifice Sizes for Uncontrolled Filling Processes in Water Pipelines.” Water 14 (6): 888. doi:10.3390/w14060888 | spa |
dcterms.bibliographicCitation | American Water Works Association (AWWA). 2016. Air Release, Air/Vacuum Valves and Combination Air Valves (M51). American Water Works Association. | spa |
dcterms.bibliographicCitation | Besharat, M., O. E. Coronado-Hernández, V. S. Fuertes-Miquel, M. T. Viseu, and H. M. Ramos. 2018. “Backflow Air and Pressure Analysis in Emptying a Pipeline Containing an Entrapped Air Pocket.” Urban Water Journal 15 (8): 769–779. | spa |
dcterms.bibliographicCitation | Besharat, M., O. E. Coronado-Hernández, V. S. Fuertes-Miquel, M. T. Viseu, and H. M. Ramos. 2019. “Computational Fluid Dynamics for Sub-Atmospheric Pressure Analysis in Pipe Drainage.” Journal of Hydraulic Research 58 (4): 553–565. doi:10.1080/00221686.2019.1625819 | spa |
dcterms.bibliographicCitation | Besharat, M., R. Tarinejad, M. T. Aalami, and H. M. Ramos. 2016. “Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: Cfd and Experimental Analysis.” Water Resources Management 30 (8): 2687–2702. doi:10.1007/s11269-016-1310-1 | spa |
dcterms.bibliographicCitation | Blazek, J. 2015. Computational Fluid Dynamics: Principles and Applications. Oxford: Butterworth-Heinemann | spa |
dcterms.bibliographicCitation | Chan, S. N., J. Cong, and J. H. Lee. 2018. “3d Numerical Modeling of Geyser Formation by Release of Entrapped Air from Horizontal Pipe into Vertical Shaft.” Journal of Hydraulic Engineering 144 (3): 04017071. doi:10.1061/(ASCE)HY.1943-7900.0001416. | spa |
dcterms.bibliographicCitation | CollIns, R. P., J. B. BoxAll, B. W. KARneY, B. Brunone, and S. Meniconi. 2012. “How Severe Can Transients Be After a Sudden Depressurization?” Journal-American Water Works Association 104 (4): E243–251. doi:10.5942/jawwa.2012.104.0055. | spa |
dcterms.bibliographicCitation | Coronado-Hernández, Ó. E. 2019. “Transient phenomena during the emptying process of water in pressurized pipelines.” Ph. D. thesis, Universitat Politècnica de València, Valencia, Spain. | spa |
dcterms.bibliographicCitation | Coronado-Hernández, O. E., D. M. Bonilla-Correa, A. Lovo, V. S. Fuertes-Miquel, G. Gatica, R. Linfati, and J. R. Coronado-Hernández. 2022. “An Implicit Formulation for Calculating Final Conditions in Drainage Maneuvers in Pressurized Water Installations.” Water 14 (21): 3364. doi:10.3390/w14213364 | spa |
dcterms.bibliographicCitation | Coronado-Hernández, O. E., V. S. Fuertes-Miquel, M. Besharat, and H. M. Ramos. 2017. “Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves.” Water 9 (2): 98. doi:10.3390/w9020098 | spa |
dcterms.bibliographicCitation | Coronado-Hernández, O. E., V. S. Fuertes-Miquel, M. Besharat, and H. M. Ramos. 2018. “Subatmospheric Pressure in a Water Draining Pipeline with an Air Pocket.” Urban Water Journal 15 (4): 346–352. doi:10.1080/1573062X.2018.1475578. | spa |
dcterms.bibliographicCitation | Fuertes-Miquel, V. S., O. E. Coronado-Hernández, P. L. Iglesias-Rey, and D. Mora-Meliá. 2019. “Transient Phenomena During the Emptying Process of a Single Pipe with Water–Air Interaction.” Journal of Hydraulic Research 57 (3): 318–326. doi:10.1080/00221686.2018.1492465. | spa |
dcterms.bibliographicCitation | Greenshields, C., and H. Weller. 2022. Notes on Computational Fluid Dynamics: General Principles. Reading, UK: CFD Direct Ltd. | spa |
dcterms.bibliographicCitation | Gullberg, R. 2017. Computational Fluid Dynamics in Openfoam. Report TKP 4555. | spa |
dcterms.bibliographicCitation | Hirt, C. W., and B. D. Nichols. 1981. “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries.” Journal of Computational Physics 39 (1): 201–225. doi:10.1016/0021-9991(81)90145-5. | spa |
dcterms.bibliographicCitation | Hurtado-Misal, A. D., D. Hernández-Sanjuan, O. E. Coronado-Hernández, H. Espinoza-Roman, and V. S. Fuertes-Miquel. 2021. “Analysis of Sub-Atmospheric Pressures During Emptying of an Irregular Pipeline Without an Air Valve Using a 2D CFD Model.” Water 13 (18): 2526. doi:10.3390/w13182526. | spa |
dcterms.bibliographicCitation | zquierdo, J., V. Fuertes, E. Cabrera, P. Iglesias, and J. Garcia-Serra. 1999. “Pipeline Start-Up with Entrapped Air.” Journal of Hydraulic Research 37 (5): 579–590. doi:10.1080/00221689909498518. | spa |
dcterms.bibliographicCitation | Jasak, H., and H. Weller. 1995. “Interface Tracking Capabilities of the Inter-Gamma Differencing Scheme.” In Department of Mechanical Engineering, 1–9. London: Imperial College of Science, Technology and Medicine. | spa |
dcterms.bibliographicCitation | Laanearu, J., I. Annus, T. Koppel, A. Bergant, S. Vučković, Q. Hou, A. S. Tijsseling, A. Anderson, and J. M. Van’t Westende. 2012. “Emptying of Large-Scale Pipeline by Pressurized Air.” Journal of Hydraulic Engineering 138 (12): 1090–1100. doi:10.1061/(ASCE)HY.1943-7900.0000631. | spa |
dcterms.bibliographicCitation | Laanearu, J., Q. Hou, I. Annus, and A. S. Tijsseling 2015. “Water-Column Mass Losses During the Emptying of a Large-Scale Pipeline by Pressurized Air.” Proceedings of the Estonian Academy of Sciences 64 (1): 8. | spa |
dcterms.bibliographicCitation | Launder, B. E., and D. B. Spalding. 1974. “The numerical computation of turbulent flows.“ Computer Methods in Applied Mechanics and Engineering 3 (2): 269–289. doi:10.1016/0045-7825(74)90029-2. | spa |
dcterms.bibliographicCitation | León, A. S., M. S. Ghidaoui, A. R. Schmidt, and M. H. García. 2010. “A Robust Two-Equation Model for Transient-Mixed Flows.” Journal of Hydraulic Research 48 (1): 44–56. doi:10.1080/00221680903565911 | spa |
dcterms.bibliographicCitation | Martin, C. S. 1976. “Entrapped Air in Pipelines.” In Proceedings of the Second International Conference on Pressure Surges. London, UK. | spa |
dcterms.bibliographicCitation | Martins, Nuno M. C., J. N. Delgado, H. M. Ramos, and D. I. Covas. 2017. “Maximum Transient Pressures in a Rapidly Filling Pipeline with Entrapped Air Using a CFD Model.” Journal of Hydraulic Research 55 (4): 506–519. doi:10.1080/00221686.2016.1275046. | spa |
dcterms.bibliographicCitation | Martins, Nuno M.C., A. K. Soares, H. M. Ramos, and D. I. Covas. 2016. “Cfd Modeling of Transient Flow in Pressurized Pipes.” Computers & Fluids 126: 129–140. doi:10.1016/j.compfluid.2015.12.002. | spa |
dcterms.bibliographicCitation | Mavriplis, D. J. 1996. “Mesh Generation and Adaptivity for Complex Geometries and Flows.” In Handbook of Computational Fluid Mechanics, 417–459. London: Academic Press. | spa |
dcterms.bibliographicCitation | Menter, F. R. 1994. “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications.” AIAA Journal 32 (8): 1598–1605. doi:10.2514/3.12149. | spa |
dcterms.bibliographicCitation | Menter, F. R. 2009. “Review of the Shear-Stress Transport Turbulence Model Experience from an Industrial Perspective.” International Journal of Computational Fluid Dynamics 23 (4): 305–316. doi:10.1080/10618560902773387 | spa |
dcterms.bibliographicCitation | Menter, F., and T. Esch. 2001. “Elements of Industrial Heat Transfer Predictions.” In 16th Brazilian Congress of Mechanical Engineering (COBEM), Vol. 109, 650. Uberlândia: COBEM. | spa |
dcterms.bibliographicCitation | Paternina-Verona, D. A., O. E. Coronado-Hernández, A. M. Aguirre-Mendoza, H. G. Espinoza-Román, and V. S. Fuertes-Miquel. 2023. “Three-Dimensional Simulation of Transient Flows During the Emptying of Pipes with Entrapped Air.” Journal of Hydraulic Engineering 149 (4): 04023007. doi:10.1061/JHEND8.HYENG-13302. | spa |
dcterms.bibliographicCitation | Paternina-Verona, D. A., O. E. Coronado-Hernández, H. G. Espinoza-Román, M. Besharat, V. S. Fuertes-Miquel, and H. M. Ramos. 2022. “Three-Dimensional Analysis of Air-Admission Orifices in Pipelines During Hydraulic Drainage Events.” Sustainability 14 (21): 14600. doi:10.3390/su142114600 | spa |
dcterms.bibliographicCitation | Romero, G., V. S. Fuertes-Miquel, Ó. E. Coronado-Hernández, R. Ponz-Carcelén, and F. Biel-Sanchis. 2020. “Analysis of Hydraulic Transients During Pipeline Filling Processes with Air Valves in Large-Scale Installations.” Urban Water Journal 17 (6): 568–575. doi:10.1080/1573062X.2020.1800762 | spa |
dcterms.bibliographicCitation | Spalding, D. 1961. “A Single Formula for the “Law of the Wall”.” Journal of Applied Mechanics 28 (3): 455–458. doi:10.1115/1.3641728. | spa |
dcterms.bibliographicCitation | Tijsseling, A. S., Q. Hou, Z. Bozkuş, and J. Laanearu. 2016. “Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines.” Journal of Pressure Vessel Technology 138 (3): 3. doi:10.1115/1.4031508 | spa |
dcterms.bibliographicCitation | Wang, J., and J. Vasconcelos. 2018. “Manhole Cover Displacement Caused by the Release of Entrapped Air Pockets.” Journal of Water Management Modeling. doi:10.14796/JWMM.C444 | spa |
dcterms.bibliographicCitation | Wang, H., L. Zhou, D. Liu, B. Karney, P. Wang, L. Xia, J. Ma, and C. Xu. 2016. “Cfd Approach for Column Separation in Water Pipelines.” Journal of Hydraulic Engineering 142 (10): 04016036. doi:10.1061/(ASCE)HY.1943-7900.0001171 | spa |
dcterms.bibliographicCitation | Wilcox, D. C. 1988. “Reassessment of the Scale-Determining Equation for Advanced Turbulence Models.” AIAA Journal 26 (11): 1299–1310. doi:10.2514/3.10041. | spa |
dcterms.bibliographicCitation | Zhou, L., D. Liu, and B. Karney. 2013. “Investigation of Hydraulic Transients of Two Entrapped Air Pockets in a Water Pipeline.” Journal of Hydraulic Engineering 139 (9): 949–959. doi:10.1061/(ASCE)HY.1943-7900.0000750. | spa |
dcterms.bibliographicCitation | Zhou, L., D.-Y. Liu, and C.-Q. Ou. 2011. “Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model.” Engineering Applications of Computational Fluid Mechanics 5 (1): 127–140. doi:10.1080/19942060.2011.11015357 | spa |
dcterms.bibliographicCitation | Zhou, L., H. Wang, B. Karney, D. Liu, P. Wang, and S. Guo. 2018. “Dynamic Behavior of Entrapped Air Pocket in a Water Filling Pipeline.” Journal of Hydraulic Engineering 144 (8): 04018045. doi:10.1061/(ASCE)HY.1943-7900.0001491 | spa |
datacite.rights | http://purl.org/coar/access_right/c_16ec | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.subject.keywords | Air inflow | spa |
dc.subject.keywords | Computational fluid dynamics | spa |
dc.subject.keywords | Sub-atmospheric pressures | spa |
dc.subject.keywords | Emptying process | spa |
dc.subject.keywords | Inlet nozzle height | spa |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Público general | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.publisher.discipline | Ingeniería Civil | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.