Mostrar el registro sencillo del ítem

dc.contributor.authorHernández Fernández, Joaquín
dc.contributor.authorOrtega-Toro, Rodrigo
dc.contributor.authorCastro-Suarez, John R .
dc.date.accessioned2023-05-30T14:04:30Z
dc.date.available2023-05-30T14:04:30Z
dc.date.issued2023-02-28
dc.date.submitted2023-05-25
dc.identifier.citationHernández-Fernández, J.;Ortega-Toro, R.; Castro-Suarez, J.R.Quantification of the Synthetic Phenolic Antioxidant Cyanox 1790 in Bottled Water with SPE-HPLC/ MS/MS and Determination of the Impact of the Use of Recycled Packaging on Its Generation. Water 2023, 15, 933. https://doi.org/10.3390/w15050933spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/11956
dc.description.abstractOne route of exposure to SPAs is through bottled water since the polymers used to make plastic bottles contain these SPAs, which migrate from the plastic to the water. Solid-phase extraction (SPE), HPLC-MS, FTIR, and DSC are used to identify and quantify these SPAs in water. Interday measurements of cyanox 1790 in water with HPLC showed RSD, error, and R2 lower than 3.78, 9.3,and 0.99995, respectively. For intraday measurements of cyanox 1790 in water, the RSD, error, and R2 were less than 4.1, 11.2, and 0.99995, respectively. Concentrations of Cyanox 1790 in water from non-recycled bottles ranged from 0.01 ± 0.0004 to 4.15 ± 0. 14 ppm, while the levels of cyanox 1790 in water in recycled bottles ranged between 0.01 ± 0.0005 and 11.27 ± 0.12 ppm. In the tests carried out, an increase in the migration of Cyanox 1790 from plastic bottles to water was identified, since the ppm of Cyanox increased in the water as the days of storage increased at 40 ◦C.spa
dc.format.extent15 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceWater - Vol. 15 No. 5 (2023)spa
dc.titleQuantification of the Synthetic Phenolic Antioxidant Cyanox 1790 in Bottled Water with SPE-HPLC/MS/MS and Determination of the Impact of the Use of Recycled Packaging on Its Generationspa
dcterms.bibliographicCitationFortune Business Insights. The Global Antioxidants Market Is Expected to Grow from $4.13 Billion in 2021 to $6.05 Billion in 2028 at a CAGR of 5.61% in the Forecast Period, 2021–2028. 2021. Available online: https://www.fortunebusinessinsights.com/ industry-reports/food-antioxidants-market-100789 (accessed on 24 January 2023).spa
dcterms.bibliographicCitationHernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and elimination of substituted synthetic phenols and volatile organic compounds in the wastewater treatment plant during the production of industrial scale polypropylene. Chemosphere 2021, 263, 128027.spa
dcterms.bibliographicCitationHernández-Fernandez, J.; Rodríguez, E. Determination of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography. J. Chromatogr. A 2019, 1607, 460442.spa
dcterms.bibliographicCitationHernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale. J. Chromatogr. A 2020, 1628, 461478.spa
dcterms.bibliographicCitationWiles, D.M.; Scott, G. Polyolefins with controlled environmental degradability. Polym. Degrad. Stab. 2006, 91, 1581–1592.spa
dcterms.bibliographicCitationAl-Malaika, S. Perspectives in stabilisation of polyolefins. Adv. Polym. Sci. 2004, 169, 121–150.spa
dcterms.bibliographicCitationPospíšil, J. Mechanistic Action of Phenolic Antioxidants in Polymers—A Review. Polym. Degrad. Stab. 1988, 20, 181–202spa
dcterms.bibliographicCitationCoreño-Alonso, J.; Méndez-Bautista, M.T. Relación estructura-propiedades de polímeros. Educ. Quím. 2010, 21, 291–299.spa
dcterms.bibliographicCitationLiu, R.; Ruan, T.; Song, S.; Lin, Y.; Jiang, G. Determination of synthetic phenolic antioxidants and relative metabolites in sewage treatment plant and recipient river by high performance liquid chromatography–electrospray tandem mass spectrometry. J. Chromatogr. A 2015, 1381, 13–21.spa
dcterms.bibliographicCitationLiu, R.; Song, S.; Lin, Y.; Ruan, T.; Jiang, G. Occurrence of synthetic phenolic antioxidants and major metabolites in municipal sewage sludge in China. Environ. Sci. Technol. 2015, 49, 2073–2080.spa
dcterms.bibliographicCitationLiu, R.; Song, S.; Lin, Y.; Ruan, T.; Jiang, G. Occurrence of synthetic phenolic antioxidants and major metabolites in municipal sewage sludge in China. Environ. Sci. Technol. 2015, 49, 2073–2080.spa
dcterms.bibliographicCitationWang, W.; Xiong, P.; Zhang, H.; Zhu, Q.; Liao, C.; Jiang, G. Analysis, occurrence, toxicity and environmental health risks of synthetic phenolic antioxidants: A review. Environ. Res. 2021, 201, 111531.spa
dcterms.bibliographicCitationWang, J.; Wang, J.; Liu, J.; Li, J.; Zhou, L.; Zhang, H.; Sun, J.; Zhuang, S. The evaluation of endocrine disrupting effects of tert-butylphenols towards estrogenic receptor α, androgen receptor and thyroid hormone receptor β and aquatic toxicities towards freshwater organisms. Environ. Pollut. 2018, 240, 396–402.spa
dcterms.bibliographicCitation13. Wang, W.; Kannan, K. Inventory, loading and discharge of synthetic phenolic antioxidants and their metabolites in wastewater treatment plants. Water Res. 2018, 129, 413–418.spa
dcterms.bibliographicCitationTang, J.; Tang, L.; Zhang, C.; Zeng, G.; Deng, Y.; Dong, H.; Wang, J.; Wu, Y. Different senescent HDPE pipe-risk: Brief field investigation from source water to tap water in China (Changsha City). Environ. Sci. Pollut. Res. 2015, 22, 16210–16214.spa
dcterms.bibliographicCitationShao-Yang, H. Toxicity effects of the environmental hormone 4-tert-octylphenol in zebrafish (Danio rerio). Int. J. Mar. Sci. 2016, 6, 4–5.spa
dcterms.bibliographicCitationHonda, M.; Kannan, K. Biomonitoring of chlorophenols in human urine from several Asian countries, Greece and the United States. Environ. Pollut. 2018, 232, 487–493.spa
dcterms.bibliographicCitationWang, W.; Kannan, K. Quantitative identification of and exposure to synthetic phenolic antioxidants, including butylated hydroxytoluene, in urine. Environ. Int. 2019, 128, 24–29.spa
dcterms.bibliographicCitationLiu, R.; Mabury, S.A. Synthetic Phenolic Antioxidants: A Review of Environmental Occurrence, Fate, Human Exposure, and Toxicity. Environ. Sci. Technol. 2020, 54, 11706–11719.spa
dcterms.bibliographicCitationDương, T.-B.; Dwivedi, R.; Bain, L.J. 2,4-di-tert-butylphenol exposure impairs osteogenic differentiation. Toxicol. Appl. Pharmacol. 2023, 461, 116386.spa
dcterms.bibliographicCitationLiu, R.; Mabury, S.A. Synthetic phenolic antioxidants and transformation products in dust from different indoor environments in Toronto, Canada. Sci. Total Environ. 2019, 672, 23–29.spa
dcterms.bibliographicCitationMakahleh, A.; Saad, B.; Bari, M.F. Synthetic phenolics as antioxidants for food preservation. In Handbook of Antioxidants for Food Preservation; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 51–78.spa
dcterms.bibliographicCitationGonçalves-Filho, D.; De Souza, D. Detection of Synthetic Antioxidants: What Factors Affect the Efficiency in the Chromatographic Analysis and in the Electrochemical Analysis? Molecules 2022, 27, 7137.spa
dcterms.bibliographicCitationChen, Y.; Chen, Q.; Zhang, Q.; Zuo, C.; Shi, H. An Overview of Chemical Additives on (Micro)Plastic Fibers: Occurrence, Release, and Health Risks. Rev. Environ. Contam. Toxicol. 2022, 260, 22spa
dcterms.bibliographicCitationWang, W.; Asimakopoulos, A.G.; Abualnaja, K.O.; Covaci, A.; Gevao, B.; Johnson-Restrepo, B.; Kumosani, T.A.; Malarvannan, G.; Minh, T.B.; Moon, H.-B.; et al. Synthetic Phenolic Antioxidants and Their Metabolites in Indoor Dust from Homes and Microenvironments. Environ. Sci. Technol. 2015, 50, 428–434.spa
dcterms.bibliographicCitationWang, W.; Asimakopoulos, A.G.; Abualnaja, K.O.; Covaci, A.; Gevao, B.; Johnson-Restrepo, B.; Kumosani, T.A.; Malarvannan, G.; Minh, T.B.; Moon, H.-B.; et al. Synthetic Phenolic Antioxidants and Their Metabolites in Indoor Dust from Homes and Microenvironments. Environ. Sci. Technol. 2015, 50, 428–434.spa
dcterms.bibliographicCitationXu, X.; Liu, A.; Hu, S.; Ares, I.; Martínez-Larrañaga, M.-R.; Wang, X.; Martínez, M.; Anadón, A.; Martínez, M.-A. Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chem. 2021, 353, 129488.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Ortega-Toro, R.; López-Martinez, J. A New Route of Valorization of Petrochemical Wastewater: Recovery of 1,3,5-Tris (4-tert-butyl-3-hydroxy-2,6-dimethyl benzyl)–1,3,5-triazine-2,4,6-(1H,3H,5H)-trione (Cyanox 1790) and Its Subsequent Application in a PP Matrix to Improve Its Thermal Stability. Molecules 2003, 28, 2003spa
dcterms.bibliographicCitationPavon, C.; Aldas, M.; López-Martínez, J.; Hernández-Fernández, J.; Arrieta, M.P. Films based on thermoplastic starch blended with pine resin derivatives for food packaging. Foods 2021, 10, 1171.spa
dcterms.bibliographicCitationBonachela, S.; López, J.; Granados, M.; Magán, J.; Hernández, J.; Baille, A. Effects of gravel mulch on surface energy balance and soil thermal regime in an unheated plastic greenhouse. Biosyst. Eng. 2020, 192, 1–13.spa
dcterms.bibliographicCitationHernández Fernández, J.; Cano, H.; Guerra, Y.; Puello Polo, E.; Ríos-Rojas, J.F.; Vivas-Reyes, R.; Oviedo, J. Identification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC). Sustainability (Switzerland) 2022, 14, 4920.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale. J. Polym. Environ. 2022, 30, 4800–4808.spa
dcterms.bibliographicCitationEuropean Parliament and Council Directive No 95/2/EC. 1995. Available online: https://eur-lex.europa.eu/eli/dir/1995/2/oj (accessed on 14 December 2022).spa
dcterms.bibliographicCitationNurerk, P.; Bunkoed, O.; Jullakan, S.; Khongkla, S.; Llompart, M.; Poorahong, S. A dumbbell-shaped stir bar made from poly(3,4- ethylenedioxythiophene)-coated porous cryogel incorporating metal organic frameworks for the extraction of synthetic phenolic antioxidants in foodstuffs. J. Chromatogr. A 2021, 1655, 462497.spa
dcterms.bibliographicCitationWang, W.; Wang, X.; Zhu, Q.; Zhou, Q.; Wang, Y.; Liao, C.; Jiang, G. Occurrence of synthetic phenolic antioxidants in foodstuffs from ten provinces in China and its implications for human dietary exposure. Food Chem. Toxicol. 2022, 165, 113134.spa
dcterms.bibliographicCitationHam, J.; Lim, W.; Park, S.; Bae, H.; You, S.; Song, G. Synthetic phenolic antioxidant propyl gallate induces male infertility through disruption of calcium homeostasis and mitochondrial function. Environ. Pollut. 2019, 248, 845–856.spa
dcterms.bibliographicCitationHam, J.; Lim, W.; You, S.; Song, G. Butylated hydroxyanisole induces testicular dysfunction in mouse testis cells by dysregulating calcium homeostasis and stimulating endoplasmic reticulum stress. Sci. Total Environ. 2019, 702, 134775.spa
dcterms.bibliographicCitationScientific Opinion on the re-evaluation of butylated hydroxyanisole—BHA (E 320) as a food additive. EFSA J. 2011, 9, 2392.spa
dcterms.bibliographicCitation. Scientific Opinion on the re-evaluation of butylated hydroxytoluene BHT (E 321) as a food additive. EFSA J. 2012, 10, 2588.spa
dcterms.bibliographicCitationStatement on the refined exposure assessment of tertiary-butyl hydroquinone (E 319). EFSA J. 2016, 14, 4363.spa
dcterms.bibliographicCitationScientific Opinion on the re-evaluation of propyl gallate (E 310) as a food additive. EFSA J. 2014, 12, 3642.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123.spa
dcterms.bibliographicCitationJoaquin, H.-F.; Juan, L.-M. Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropy lene. J. Anal. Appl. Pyrolysis 2021, 161, 10538spa
dcterms.bibliographicCitationHernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Vivas-Reyes, R.; Toloza, C.A.T. Experimental Study of the Impact of Trace Amounts of Acetylene and Methylacetylene on the Synthesis, Mechanical and Thermal Properties of Polypropylene. Int. J. Mol. Sci. 2022, 23, 12148.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Cano-Cuadro, H.; Puello-Polo, E. Emission of Bisphenol A and Four New Analogs from Industrial Wastewater Treatment Plants in the Production Processes of Polypropylene and Polyethylene Terephthalate in South America. Sustainability 2022, 14, 10919.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Castro-Suarez, J.R.; Toloza, C.A.T. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708.spa
dcterms.bibliographicCitation48. CYTEC. Cyanox 1790 Material Safety Data Sheet. 2019. Available online: https://www.echemi.com/sds/tris4-tert-butyl-3- hydroxy-26-dimethylbenzylisocyanurate-pid_Seven42940.html (accessed on 27 October 2022).spa
dcterms.bibliographicCitationAltaf, M.; Najam, T.; Jabeen, S.; Wattoo, M.; Bashair, M.; Ahmad, S.; Rehman, A. Facile synthesis of Tri-metallic layered double hydroxides (NiZnAl-LDHs): Adsorption of Rhodamine-B and methyl orange from water. Inorg. Chem. Commun. 2022, 145, 110008.spa
dcterms.bibliographicCitationAltaf, M.; Najam, T.; Jabeen, S.; Wattoo, M.; Bashair, M.; Ahmad, S.; Rehman, A. Heterointerface engineering of water stable ZIF-8@ZIF-67: Adsorption of rhodamine B from water. Surf. Interfaces 2022, 34, 102324.spa
dcterms.bibliographicCitationda Silva Costa, R.; Fernandes, T.S.M.; Almeida, E.D.S.; Oliveira, J.T.; Guedes, J.A.C.; Zocolo, G.J.; de Sousa, F.W.; Nascimento, R.F.D. Potential risk of BPA and phthalates in commercial water bottles: A mini review. J. Water Health 2021, 19, 411–435.spa
dcterms.bibliographicCitationParto, M.; Aazami, J.; Shamsi, Z.; Zamani, A.; Savabieasfahani, M. Determination of bisphenol-A in plastic bottled water in markets of Zanjan, Iran. Int. J. Environ. Sci. Technol. 2021, 19, 3337–3344.spa
dcterms.bibliographicCitationGhanem, A.; Maalouly, J.; Saad, R.A.; Salameh, D.; Saliba, C.O. Safety of Lebanese Bottled Waters: VOCs Analysis and Migration Studies. Am. J. Anal. Chem. 2013, 4, 176–189.spa
dcterms.bibliographicCitationAl-Mudhaf, H.F.; Alsharifi, F.A.; Abu-Shady, A.-S.I. A survey of organic contaminants in household and bottled drinking waters in Kuwait. Sci. Total Environ. 2009, 407, 1658–1668spa
dcterms.bibliographicCitationGambino, I.; Bagordo, F.; Grassi, T.; Panico, A.; De Donno, A. Occurrence of Microplastics in Tap and Bottled Water: Current Knowledge. Int. J. Environ. Res. Public Health 2022, 19, 5283.spa
dcterms.bibliographicCitationWelle, F.; Franz, R. Microplastic in bottled natural mineral water—Literature review and considerations on exposure and risk assessment. Food Addit. Contam. Part A 2018, 35, 2482–2492.spa
dcterms.bibliographicCitationMaxwell, O.; Olusegun, O.A.; Emmanuel, S.J.; Sociis, T.O.; Efemena, A.O.; Akinwumi, A.; Theophilus, E.A. Potential Health Risks of Heavy Metal Contents in Bottled Water from Lagos State and Its Environs, Nigeria. IOP Conf. Ser. Earth Environ. Sci. 2018, 173, 012021.spa
dcterms.bibliographicCitationNazir, M.A.; Yasar, A.; Bashir, M.A.; Siyal, S.H.; Najam, T.; Javed, M.S.; Ahmad, K.; Hussain, S.; Anjum, S.; Hussain, E.; et al. Quality assessment of the noncarbonated-bottled drinking water: Comparison of their treatment techniques. Int. J. Environ. Anal. Chem. 2020, 102, 8195–8206.spa
dcterms.bibliographicCitationLeavey-Roback, S. Heavy Metals in Bottled Natural Spring Water Article. 2011. Available online: https://www.researchgate.net/ publication/51213966 (accessed on 3 January 2023).spa
dcterms.bibliographicCitation. Ding, J.; Shen, X.; Liu, W.; Covaci, A.; Yang, F. Occurrence and risk assessment of organophosphate esters in drinking water from Eastern China. Sci. Total Environ. 2015, 538, 959–965.spa
dcterms.bibliographicCitationJosyula, A.B.; McClellen, H.; Hysong, T.A.; Kurzius-Spencer, M.; Poplin, G.S.; Stürup, S.; Burgess, J.L. Reduction in Urinary Arsenic with Bottled-water Intervention. J. Health Popul. Nutr. 2006, 24, 298–304spa
dcterms.bibliographicCitationMostafa, M.G.; Cherry, N. Arsenic in Drinking Water, Transition Cell Cancer and Chronic Cystitis in Rural Bangladesh. Int. J. Environ. Res. Public Health 2015, 12, 13739–13749spa
dcterms.bibliographicCitationWard, M.H.; Jones, R.R.; Brender, J.D.; De Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.M.; Van Breda, S.G. Drinking Water Nitrate and Human Health: An Updated Review. Int. J. Environ. Res. Public Health 2018, 15, 1557.spa
dcterms.bibliographicCitationCarvalho, S.M.; Santos, D. Consumo de agua embotellada en envases plásticos y sus consecuencias para la salud familiar y comunitaria. 2020. Available online: https://repositorio.unbosque.edu.co/bitstream/handle/20.500.12495/4410/Carvalho_ DosSantos_Sandra_Mar%25C3%25ADa_2020.pdf?sequence=1&isAllowed=y (accessed on 12 January 2023).spa
dcterms.bibliographicCitation6. Aslani, H.; Pashmtab, P.; Shaghaghi, A.; Mohammadpoorasl, A.; Taghipour, H.; Zarei, M. Tendencies towards bottled drinking water consumption: Challenges ahead of polyethylene terephthalate (PET) waste management. Health Promot. Perspect. 2021, 11, 60–68.spa
dcterms.bibliographicCitationDíez, J.R.; Antigüedad, I.; Agirre, E.; Rico, A. Perceptions and Consumption of Bottled Water at the University of the Basque Country: Showcasing Tap Water as the Real Alternative towards a Water-Sustainable University. Sustainability 2018, 10, 3431.spa
dcterms.bibliographicCitationJain; Singh, A.K.; Susan, M.A.B.H. The World around Bottled Water. Bottled Packaged Water 2019, 4, 39–61.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Puello-Polo, E.; Trilleras, J. Characterization of Microplastics in Total Atmospheric Deposition Sampling from Areas Surrounding Industrial Complexes in Northwestern Colombia. Sustainability 2022, 14, 13613.spa
dcterms.bibliographicCitationFarzadkia, M.; Shahamat, Y.D.; Nasseri, S.; Mahvi, A.H.; Gholami, M.; Shahryari, A. Catalytic Ozonation of Phenolic Wastewater: Identification and Toxicity of Intermediates. J. Eng. 2014, 2014, 520929.spa
dcterms.bibliographicCitationGuo, L.; Hu, Y.; Lei, Y.; Wu, H.; Yang, G.; Wang, Y.; Wei, G. Vitrification of petrochemical sludge for rapid, facile, and sustainable fixation of heavy metals. J. Environ. Chem. Eng. 2022, 10, 108812spa
dcterms.bibliographicCitationWang, S.; Kalkhajeh, Y.K.; Qin, Z.; Jiao, W. Spatial distribution and assessment of the human health risks of heavy metals in a retired petrochemical industrial area, south China. Environ. Res. 2020, 188, 109661spa
dcterms.bibliographicCitationKanu, I.; Achi, O. Industrial Effluents and Their Impact on Water Quality of Receiving Rivers in Nigeria Medical Microbiology View Project Fermented Food Development View Project. 2011. Available online: https://www.researchgate.net/publication/28 7104597 (accessed on 13 January 2023).spa
dcterms.bibliographicCitationRadelyuk, I.; Tussupova, K.; Klemeš, J.J.; Persson, K.M. Oil refinery and water pollution in the context of sustainable development: Developing and developed countries. J. Clean. Prod. 2021, 302, 126987spa
dcterms.bibliographicCitationRodil, R.; Quintana, J.B.; Basaglia, G.; Pietrogrande, M.C.; Cela, R. Determination of synthetic phenolic antioxidants and their metabolites in water samples by downscaled solid-phase extraction, silylation and gas chromatography–mass spectrometry. J. Chromatogr. A 2010, 1217, 6428–6435.spa
dcterms.bibliographicCitationSpectrabase. Cyanox 1790-FTIR-Spectrum-SpectraBase, 22 August 2022. Cyanox 1790 Antioxidant. Available online: https: //spectrabase.com/spectrum/I3g5xqi3f4q (accessed on 18 January 2023).spa
dcterms.bibliographicCitationCasagrande, M.; Kulsing, C.; Althakafy, J.T.; Piatnicki, C.M.S.; Marriott, P.J. Direct Analysis of Synthetic Phenolic Antioxi dants, and Fatty Acid Methyl Ester Stability in Biodiesel by Liquid Chromatography and High-Resolution Mass Spectrometry. Chromatographia 2018, 82, 271–278spa
dcterms.bibliographicCitationAlladio, E.; Amante, E.; Bozzolino, C.; Seganti, F.; Salomone, A.; Vincenti, M.; Desharnais, B. Effective validation of chromato graphic analytical methods: The illustrative case of androgenic steroids. Talanta 2020, 215, 120867.spa
dcterms.bibliographicCitationFernández, J.H.; Rincón, D.; López-Martínez, J. Development and validation of a prototype for the on-line simultaneous analysis of quality caprolactam synthesized on an industrial scale. Methodsx 2022, 10, 101952.spa
dcterms.bibliographicCitationMurry, J.E. Synthetic Polymers. In Organic Chemistry; ACS Publications: Washington, DC, USA, 2011; p. 1242. Available on line: https://www.aspu.edu.sy/laravel-filemanager/files/31/McMurry%20Organic%20Chemistry%208th%20txtbk_compressed. pdf (accessed on 4 January 2023).spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doihttps://doi.org/10.3390/w15050933
dc.subject.keywordsBottled waterspa
dc.subject.keywordsSynthetic phenolic antioxidantspa
dc.subject.keywordsCyanox 1790spa
dc.subject.keywordsRecycled packagingspa
dc.subject.keywordsNon-recycled packagingspa
dc.subject.keywordsAdditive migrationspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.