Mostrar el registro sencillo del ítem

dc.contributor.authorHernandez-Fernandez, Joaquín
dc.contributor.authorLambis, Henry
dc.contributor.authorVivas Reyes, Ricardo
dc.date.accessioned2023-05-26T13:50:51Z
dc.date.available2023-05-26T13:50:51Z
dc.date.issued2023-03-11
dc.date.submitted2023-05-25
dc.identifier.citationHernandez-Fernandez, J.;Lambis, H.; Reyes, R.V. Application of Pyrolysis for the Evaluation of Organic Compounds in Medical Plastic Waste Generated in the City of Cartagena-Colombia Applying TG-GC/MS. Int. J. Mol. Sci. 2023, 24,5397. https://doi.org/10.3390/ijms24065397spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/11953
dc.description.abstractIn this study, the thermal degradation and pyrolysis of hospital plastic waste consisting of polyethylene (PE), polystyrene (PS), and polypropylene (PP) were investigated using TG-GC/MS. The identified molecules with the functional groups of alkanes, alkenes, alkynes, alcohols, aromatics, phenols, CO and CO2 were found in the gas stream from pyrolysis and oxidation, and are chemical structures with derivatives of aromatic rings. They are mainly related to the degradation of PS hospital waste, and the alkanes and alkenes groups originate mainly from PP and PE-based medical waste. The pyrolysis of this hospital waste did not show the presence of derivatives of polychlorinated dibenzo p-dioxins and polychlorinated dibenzofurans, which is an advantage over classical incineration methodologies. CO, CO2 , phenol, acetic acid and benzoic acid concentrations were higher in the gases from the oxidative degradation than in those generated in the pyrolysis with helium. In this article, we propose different pathways of reaction mechanisms that allow us to explain the presence of molecules with other functional groups, such as alkanes, alkenes, carboxylic acids, alcohols, aromatics and permanent gases.spa
dc.format.extent21 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceInterrnational Journal of Molecular Sciences - Vol. 24 No. 6 (2023)spa
dc.titleApplication of Pyrolysis for the Evaluation of Organic Compounds in Medical Plastic Waste Generated in the City of Cartagena-Colombia Applying TG-GC/MSspa
dcterms.bibliographicCitationCoreño-Alonso, J.; Teresa Méndez-Bautista, M. Relationship structure-properties of polymers. Educ. Química 2010, 24, 291–299.spa
dcterms.bibliographicCitationDeagen, M.E.; Walsh, D.J.; Audus, D.J.; Kroenlein, K.; de Pablo, J.J.; Aou, K.; Chard, K.; Jensen, K.F.; Olsen, B.D. Networks and interfaces as catalysts for polymer materials innovation. Cell Rep. Phys. Sci. 2022, 3, 101126.spa
dcterms.bibliographicCitationVila-Costa, M.; Martinez-Varela, A.; Rivas, D.; Martinez, P.; Pérez-López, C.; Zonja, B.; Montemurro, N.; Tauler, R.; Barceló, D.; Ginebreda, A. Advanced analytical, chemometric, and genomic tools to identify polymer degradation products and potential microbial consumers in wastewater environments. Chem. Eng. J. 2022, 442, 136175.spa
dcterms.bibliographicCitationArdusso, M.; Forero-López, A.; Buzzi, N.; Spetter, C.; Fernández-Severini, M. COVID-19 pandemic repercussions on plastic and antiviral polymeric textile causing pollution on beaches and coasts of South America. Sci. Total Environ. 2020, 763, 144365.spa
dcterms.bibliographicCitationPavon, C.; Aldas, M.; López-Martínez, J.; Hernández-Fernández, J.; Arrieta, M. Films Based on Thermoplastic Starch Blended with Pine Resin Derivatives for Food Packaging. Foods 2021, 10, 1171.spa
dcterms.bibliographicCitationwang, Y.; Cui, X.; Zhang, P.; Wang, Y.; Lu, W. Synthesis of porphyrin porous organic polymers and their application of water pollution treatment: A review. Environ. Technol. Innov. 2023, 29, 102972.spa
dcterms.bibliographicCitationMahari, W.A.W.; Awang, S.; Zahariman, N.A.Z.; Peng, W.; Man, M.; Park, Y.-K.; Lee, J.; Sonne, C.; Lam, S.S. Microwave co-pyrolysis for simultaneous disposal of environmentally hazardous hospital plastic waste, lignocellulosic, and triglyceride biowaste. J. Hazard. Mater. 2021, 423, 127096spa
dcterms.bibliographicCitationHernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale. J. Chromatogr. A 2020, 1628, 461478.spa
dcterms.bibliographicCitationZhao, X.; Korey, M.; Li, K.; Copenhaver, K.; Tekinalp, H.; Celik, S.; Kalaitzidou, K.; Ruan, R.; Ragauskas, A.J.; Ozcan, S. Plastic waste upcycling toward a circular economy. Chem. Eng. J. 2021, 428, 131928.spa
dcterms.bibliographicCitationGarcía, Y.G.; Carlos, J.; Contreras, M.; Reynoso, G.; Antonio, J.; López, C. Síntesis y Biodegradation de Polihidroxialcanoatos: Plásticos de Origen Microbial. Rev. Int. Contam. Ambient 2013, 29, 77–115. Available online: https://www.scielo.org.mx/scielo. php?script=sci_arttext&pid=S0188-49992013000100007 (accessed on 15 December 2022).spa
dcterms.bibliographicCitationHernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and elimination of substituted synthetic phenols and volatile organic compounds in the wastewater treatment plant during the production of industrial scale polypropylene. Chemosphere 2020, 263, 128027spa
dcterms.bibliographicCitationHernández-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale. J. Polym. Environ. 2022, 30, 4800–4808.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Puello-Polo, E.; Trilleras, J. Characterization of Microplastics in Total Atmospheric Deposition Sampling from Areas Surrounding Industrial Complexes in Northwestern Colombia. Sustainability 2022, 14, 13613.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Rayón, E.; López, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379.spa
dcterms.bibliographicCitationRivera Leiva, A.F.; Hernández-Fernández, J.; Ortega Toro, R. Active Films Based on Starch and Wheat Gluten (Triticum vulgare) for Shelf-Life Extension of Carrots. Polymers 2022, 14, 5077.spa
dcterms.bibliographicCitationSu, G.; Ong, H.C.; Ibrahim, S.; Fattah, I.M.R.; Mofijur, M.; Chong, C.T. Valorisation of medical waste through pyrolysis for a cleaner environment: Progress and challenges. Environ. Pollut. 2021, 279, 116934.spa
dcterms.bibliographicCitationGill, Y.Q.; Khurshid, M.; Abid, U.; Ijaz, M.W. Review of hospital plastic waste management strategies for Pakistan. Environ. Sci. Pollut. Res. 2021, 29, 9408–9421.spa
dcterms.bibliographicCitationWang, J.; Shen, J.; Ye, D.; Yan, X.; Zhang, Y.; Yang, W.; Li, X.; Wang, J.; Zhang, L.; Pan, L. Disinfection technology of hospital wastes and wastewater: Suggestions for disinfection strategy during coronavirus Disease 2019 (COVID-19) pandemic in China. Environ. Pollut. 2020, 262, 114665.spa
dcterms.bibliographicCitationTerapalli, A.; Kamireddi, D.; Sridevi, V.; Tukarambai, M.; Suriapparao, D.V.; Rao, C.S.; Gautam, R.; Modi, P.R. Microwave-assisted in-situ catalytic pyrolysis of polystyrene: Analysis of product formation and energy consumption using machine learning approach. Process. Saf. Environ. Prot. 2022, 166, 57–67.spa
dcterms.bibliographicCitationFletcher, C.; Clair, R.S.; Sharmina, M. A framework for assessing the circularity and technological maturity of plastic waste management strategies in hospitals. J. Clean. Prod. 2021, 306, 127169.spa
dcterms.bibliographicCitationBambarén-Alatrista, C. Impacto Ambiental de la Operación de un Hospital Público en la Ciudad de Lima—Peru. Available online: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-46342014000400015 (accessed on 15 December 2022).spa
dcterms.bibliographicCitationMinistry of the Environment Ministry of Health Decree 2676 ‘by Which the Integral Management of Hospital and Similar Waste Is Regulated’. The President of the Republic of Colombia. Available online: https://oab.ambientebogota.gov.co/?post_type= dlm_download&p=3713#:~:text=Por%20el%20cual%20se%20reglamenta,los%20residuos%20hospitalarios%20y%20similares. &text=Resumen%3A,por%20personas%20naturales%20o%20jur%C3%ADdicas (accessed on 8 December 2022).spa
dcterms.bibliographicCitation3. WHO. Dioxins and Their Effects on Human Health. WHO Press Center, 4 October 2016. Available online: https://www.who.int/ es/news-room/fact-sheets/detail/dioxins-and-their-effects-on-human-health (accessed on 14 December 2022).spa
dcterms.bibliographicCitation. ATSDR. Public Health Abstracts-Polycyclic Aromatic Hydrocarbons (PHA)-Polycyclic Aromatic Hydrocarbons (PAH). 1995. Available online: https://www.atsdr.cdc.gov/es/phs/es_phs69.html (accessed on 14 December 2022).spa
dcterms.bibliographicCitationLee, W.-J.; Liow, M.-C.; Tsai, P.-J.; Hsieh, L.-T. Emission of polycyclic aromatic hydrocarbons from medical waste incinerators. Atmos. Environ. 2002, 36, 781–790. [spa
dcterms.bibliographicCitationMani, M.; Subash, C.; Nagarajan, G. Performance, emission and combustion characteristics of a DI diesel engine using waste plastic oil. Appl. Therm. Eng. 2009, 29, 2738–2744.spa
dcterms.bibliographicCitationHernández-Fernández, J.; López-Martínez, J. Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis. J. Anal. Appl. Pyrolysis 2021, 155, 105052.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Castro-Suarez, J.R.; Toloza, C.A.T. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708.spa
dcterms.bibliographicCitationJoaquin, H.-F.; Juan, L.-M. Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropy lene. J. Anal. Appl. Pyrolysis 2021, 161,spa
dcterms.bibliographicCitationSogancioglu, M.; Ahmetli, G.; Yel, E. A Comparative Study on Waste Plastics Pyrolysis Liquid Products Quantity and Energy Recovery Potential. Energy Procedia 2017, 118, 221–226.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910.spa
dcterms.bibliographicCitationDemirbas, A. Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons. J. Anal. Appl. Pyrolysis 2004, 72, 97–102.spa
dcterms.bibliographicCitationCafiero, L.; Castoldi, E.; Tuffi, R.; Ciprioti, S.V. Identification and characterization of plastics from small appliances and kinetic analysis of their thermally activated pyrolysis. Polym. Degrad. Stab. 2014, 109, 307–318.spa
dcterms.bibliographicCitationMastral, J.; Berrueco, C.; Ceamanos, J. Modelling of the pyrolysis of high density polyethylene: Product distribution in a fluidized bed reactor. J. Anal. Appl. Pyrolysis 2007, 79, 313–322.spa
dcterms.bibliographicCitationSarker, M.; Rashid, M.M.; Rahman, M.S.; Molla, M. A New Kind of Renewable Energy: Production of Aromatic Hydrocarbons Naphtha Chemical by Thermal Degradation of Polystyrene (PS) Waste Plastic. Am. J. Clim. Chang. 2012, 01, 145–153.spa
dcterms.bibliographicCitationAl-Salem, S.M.; Lettieri, P.; Baeyens, J. The valorization of plastic solid waste (PSW) by primary to quaternary routes: From re-use to energy and chemicals. Prog. Energy Combust. Sci. 2010, 36, 103–129.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Development and validation of a methodology for quantifying parts per-billion levels of arsine and phosphine in nitrogen, hydrogen and liquefied petroleum gas using a variable pressure sampler coupled to gas chromatography-mass spectrometry. J. Chromatogr. A 2020, 1637, 461833.spa
dcterms.bibliographicCitationJoaquin, H.-F.; Juan, L. Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization. J. Chromatogr. A 2019, 1614, 460736spa
dcterms.bibliographicCitationHernández-Fernández, J.; Cano, H.; Rodríguez-Couto, S. Quantification and Removal of Volatile Sulfur Compounds (VSCs) in Atmospheric Emissions in Large (Petro) Chemical Complexes in Different Countries of America and Europe. Sustainability 2022, 14, 11402.spa
dcterms.bibliographicCitationKumar, S.; Panda, A.K.; Singh, R. A review on tertiary recycling of high-density polyethylene to fuel. Resour. Conserv. Recycl. 2011, 55, 893–910.spa
dcterms.bibliographicCitationrma, B.K.; Moser, B.R.; Vermillion, K.E.; Doll, K.M.; Rajagopalan, N. Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags. Fuel Process. Technol. 2014, 122, 79–90.spa
dcterms.bibliographicCitationHujuri, U.; Ghoshal, A.K.; Gumma, S. Modeling pyrolysis kinetics of plastic mixtures. Polym. Degrad. Stab. 2008, 93, 1832–1837.spa
dcterms.bibliographicCitationBaggio, P.; Baratieri, M.; Gasparella, A.; Longo, G.A. Energy and environmental analysis of an innovative system based on municipal solid waste (MSW) pyrolysis and combined cycle. Appl. Therm. Eng. 2008, 28, 136–144.spa
dcterms.bibliographicCitationMalkow, T. Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal. Waste Manag. 2004, 24, 53–79spa
dcterms.bibliographicCitationAguado, R.; Elordi, G.; Arrizabalaga, A.; Artetxe, M.; Bilbao, J.; Olazar, M. Principal component analysis for kinetic scheme proposal in the thermal pyrolysis of waste HDPE plastics. Chem. Eng. J. 2014, 254, 357–364.spa
dcterms.bibliographicCitationVonghia, E.; Boocock, D.G.B.; Konar, S.K.; Leung, A. Pathways for the Deoxygenation of Triglycerides to Aliphatic Hydrocarbons over Activated Alumina. Energy Fuels 1995, 9, 1090–1096spa
dcterms.bibliographicCitationMahari, W.A.W.; Azwar, E.; Li, Y.; Wang, Y.; Peng, W.; Ma, N.L.; Yang, H.; Rinklebe, J.; Lam, S.S.; Sonne, C. Deforestation of rainforests requires active use of UN’s Sustainable Development Goals. Sci. Total Environ. 2020, 742, 140681.spa
dcterms.bibliographicCitationMei, Q.; Shen, X.; Liu, H.; Han, B. Selectively transform lignin into value-added chemicals. Chin. Chem. Lett. 2019, 30, 15–24.spa
dcterms.bibliographicCitationAhmad, Z.; Al-Sagheer, F.; Al-Awadi, N. Pyro-GC/MS and thermal degradation studies in polystyrene–poly(vinyl chloride) blends. J. Anal. Appl. Pyrolysis 2010, 87, 99–107.spa
dcterms.bibliographicCitationArtetxe, M.; Lopez, G.; Amutio, M.; Barbarias, I.; Arregi, A.; Aguado, R.; Bilbao, J.; Olazar, M. Styrene recovery from polystyrene by flash pyrolysis in a conical spouted bed reactor. Waste Manag. 2015, 45, 126–133.spa
dcterms.bibliographicCitationZhou, J.; Qiao, Y.; Wang, W.; Leng, E.; Huang, J.; Yu, Y.; Xu, M. Formation of styrene monomer, dimer and trimer in the primary volatiles produced from polystyrene pyrolysis in a wire-mesh reactor. Fuel 2016, 182, 333–339.spa
dcterms.bibliographicCitationChrissafis, K.; Paraskevopoulos, K.; Papageorgiou, G.; Bikiaris, D. Thermal decomposition of poly(propylene sebacate) and poly(propylene azelate) biodegradable polyesters: Evaluation of mechanisms using TGA, FTIR and GC/MS. J. Anal. Appl. Pyrolysis 2011, 92, 123–130.spa
dcterms.bibliographicCitationStraka, P.; Biˇcáková, O.; Šupová, M. Thermal conversion of polyolefins/polystyrene ternary mixtures: Kinetics and pyrolysis on a laboratory and commercial scales. J. Anal. Appl. Pyrolysis 2017, 128, 196–207.spa
dcterms.bibliographicCitationLi, Y.; Cai, J.; Zhang, L.; Yang, J.; Wang, Z.; Qi, F. Experimental and modeling investigation on premixed ethylbenzene flames at low pressure. Proc. Combust. Inst. 2011, 33, 617–624.spa
dcterms.bibliographicCitationLi, Y.; Tian, Z.; Zhang, L.; Yuan, T.; Zhang, K.; Yang, B.; Qi, F. An experimental study of the rich premixed ethylbenzene flame at low pressure. Proc. Combust. Inst. 2008, 32, 647–655.spa
dcterms.bibliographicCitationLi, Y.; Cai, J.; Zhang, L.; Yuan, T.; Zhang, K.; Qi, F. Investigation on chemical structures of premixed toluene flames at low pressure. Proc. Combust. Inst. 2011, 33, 593–600.spa
dcterms.bibliographicCitationYuan, W.; Li, Y.; Pengloan, G.; Togbé, C.; Dagaut, P.; Qi, F. A comprehensive experimental and kinetic modeling study of ethylbenzene combustion. Combust. Flame 2016, 166, 255–265.spa
dcterms.bibliographicCitationYuan, W.; Li, Y.; Dagaut, P.; Yang, J.; Qi, F. Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. I. Flow reactor pyrolysis and jet stirred reactor oxidation. Combust. Flame 2014, 162, 3–21.spa
dcterms.bibliographicCitationYang, J.; Zhao, L.; Yuan, W.; Qi, F.; Li, Y. Experimental and kinetic modeling investigation on laminar premixed benzene flames with various equivalence ratios. Proc. Combust. Inst. 2014, 35, 855–862.spa
dcterms.bibliographicCitationQin, L.; Xing, F.; Zhao, B.; Chen, W.; Han, J. Reducing polycyclic aromatic hydrocarbon and its mechanism by porous alumina bed material during medical waste incineration. Chemosphere 2018, 212, 200–208.spa
dcterms.bibliographicCitationSaggese, C.; Frassoldati, A.; Cuoci, A.; Faravelli, T.; Ranzi, E. A wide range kinetic modeling study of pyrolysis and oxidation of benzene. Combust. Flame 2013, 160, 1168–1190spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doihttps://doi.org/10.3390/ ijms24065397
dc.subject.keywordsPolymersspa
dc.subject.keywordsWastesspa
dc.subject.keywordsDegradationspa
dc.subject.keywordsAnalysesspa
dc.subject.keywordsCompositionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.