Mostrar el registro sencillo del ítem

dc.contributor.authorHernandez-Fernandez, Joaquín
dc.contributor.authorMarulanda, Karen
dc.contributor.authorPuello-Polo, Esneyder
dc.date.accessioned2023-05-26T12:21:07Z
dc.date.available2023-05-26T12:21:07Z
dc.date.issued2023-02-16
dc.date.submitted2023-05-25
dc.identifier.citationHernández-Fernández, J., Marulanda, K., & Puello-Polo, E. (2023). A new valorization route of petrochemical wastewater: Recovery of phenolic derivatives and their subsequent application in a PP matrix for the improvement of their durability in multiple applications. Journal of Polymers and the Environment, doi:10.1007/s10924-023-02764-7spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/11952
dc.description.abstractWastewater from industrial processes contains different compounds that can be of great use to improve its circularity. The potential of wastewater can be exploited by applying extraction techniques to obtain compounds of interest and recircu late them in the process. In this study, the residual water generated during the polypropylene deodorization process was evaluated. The residues of the additives used during the synthesis of the resin are extracted from these waters. With this recovery, contamination of water bodies is avoided and the circularity of the polymer production process is increased.Solid phase extraction and HPLC were used to recover the phenolic compound, obtaining a recovery of more than 95%. FTIR and DSC were applied to evaluate the purity of the extracted compound. Finally, the effectiveness of the phenolic compound was evaluated by applying it to the resin and evaluating its thermal stability by TGA, obtaining as a result, that the recovered additive improves the thermal properties of the material.spa
dc.format.extent10 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Polymers and the Environment - Vol. 31 No. 6 (2023)spa
dc.titleA new Valorization Route of Petrochemical Wastewater: Recovery of Phenolic Derivatives and their Subsequent Application in a PP Matrix for the Improvement of their Durability in Multiple Applicationsspa
dcterms.bibliographicCitationJafarinejad S (2016) Petroleum Waste Treatment and Pollution Control. p. 362spa
dcterms.bibliographicCitationKumar L, Chugh M, Kumar S, Kumar K, Sharma J, Bharadvaja N (2022) “Remediation of petrorefinery wastewater contaminants: A review on physicochemical and bioremediation strategies,” Process Saf. Environ. Prot, vol. 159, pp. 362–375, Mar. doi: https://doi.org/10.1016/j.psep.2022.01.009spa
dcterms.bibliographicCitationSingh S, Shikha (2019) “Treatment and Recycling of Wastewater from Oil Refinery/Petroleum Industry,” pp.303–332. doi: https:// doi.org/10.1007/978-981-13-1468-1_10spa
dcterms.bibliographicCitation“Recent developments (2022) in hazardous pollutants removal from wastewater and water reuse within a circular economy | npj Clean Water.” https://www.nature.com/articles/s41545-022- 00154-5 (accessed Aug. 22,spa
dcterms.bibliographicCitationGhimire N, Wang S (2018) Biological Treatment of Petro chemical Wastewater. Intechopen. doi: https://doi.org/10.5772/ intechopen.79655spa
dcterms.bibliographicCitationYu L, Han M, He F (2017) “A review of treating oily wastewater,” Arab. J. Chem, vol. 10, p. 1913–1922, May. doi: https://doi. org/10.1016/j.arabjc.2013.07.020spa
dcterms.bibliographicCitationrnández-Fernandez J, Rodríguez E (Dec. 2019) Determina tion of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography. J Chromatogr A 1607:460442. doi: https://doi.org/10.1016/j.chroma.2019.460442spa
dcterms.bibliographicCitationHernández-Fernández J, Lopez-Martinez J, Barceló D (Jan. 2021) Quantification and elimination of substituted synthetic phenols and volatile organic compounds in the wastewater treat ment plant during the production of industrial scale polypropyl ene. Chemosphere 263:128027. doi: https://doi.org/10.1016/j. chemosphere.2020.128027spa
dcterms.bibliographicCitationMohamad said K, Ismail A, Abdul Karim Z, Abdullah S, Hafeez A (May 2021) A review of Technologies for the Pheno lic Compounds recovery and phenol removal from Wastewater. Process Saf Environ Prot 151. doi: https://doi.org/10.1016/j. psep.2021.05.015spa
dcterms.bibliographicCitationMohd DrA (Mar. 2020) Presence of phenol in wastewater effluent and its removal: an overview. Int J Environ Anal Chem 1–23. doi: https://doi.org/10.1080/03067319.2020.1738412spa
dcterms.bibliographicCitationMicrobial Degradation of Phenol : A Comparative Study.” Accessed: Aug. 22, 2022. [Online]. Available: https://core.ac.uk/ download/pdf/53189005.pdfspa
dcterms.bibliographicCitation13. Gucbilmez Y (2022) Physiochemical Properties and removal methods of Phenolic Compounds from Waste Waters. IntechO pen. doi: https://doi.org/10.5772/intechopen.101545spa
dcterms.bibliographicCitationAlbuquerque B, Heleno S, Oliveira M, Barros L, Ferreira I (2020) Phenolic compounds: current industrial applications, limi tations and future challenges. Food Funct Nov. doi: https://doi. org/10.1039/D0FO02324Hspa
dcterms.bibliographicCitationRho S-J, Mun S, Park J, Kim Y-R (2021) “Retarding Oxida tive and Enzymatic Degradation of Phenolic Compounds Using Large-Ring Cycloamylose,” Foods, vol. 10, no. 7, p. 1457, Jun. doi: https://doi.org/10.3390/foods10071457spa
dcterms.bibliographicCitation“Degradation of Polymers (2022) ” https://polymerdatabase.com/ polymer%20chemistry/Thermal%20Degradation.htmlspa
dcterms.bibliographicCitationPD, Ryan D, Robards K (2021) “Chapter 1 Introduc tion to Basic Principles of Antioxidant Activity,” pp. 1–62, doi: https://doi.org/10.1039/9781839165337-00001spa
dcterms.bibliographicCitationA, Chandra N (2010) Free radicals, antioxi dants and functional foods: impact on human health. Pharmacogn Rev 4(8):118–126. doi: https://doi.org/10.4103/0973-7847.70902spa
dcterms.bibliographicCitationSantos-Sánchez NF, Salas-Coronado R, Villanueva-Cañongo C, Hernández-Carlos B (2019) Antioxidant compounds and their antioxidant mechanism. IntechOpen. doi: https://doi.org/10.5772/ intechopen.85270spa
dcterms.bibliographicCitationHernández-Fernández J, Rayón E, López J, Arrieta MP (Nov. 2019) Enhancing the Thermal Stability of Polypropylene by blending with Low amounts of Natural Antioxidants. Macro mol Mater Eng 304(11):1900379. doi: https://doi.org/10.1002/ mame.201900379spa
dcterms.bibliographicCitationAlsabri A, Tahir F, Al-Ghamdi SG (2022) “Environmental impacts of polypropylene (PP) production and prospects of its recycling in the GCC region,” Mater. Today Proc, vol. 56, pp. 2245–2251, doi: https://doi.org/10.1016/j.matpr.2021.11.574spa
dcterms.bibliographicCitationThörnblom K, Palmlöf M, Hjertberg T (2011) “The extract ability of phenolic antioxidants into water and organic solvents from polyethylene pipe materials – Part I,” Polym. Degrad. Stab, vol. 96, no. 10, pp. 1751–1760, Oct. doi: https://doi.org/10.1016/j. polymdegradstab.2011.07.023spa
dcterms.bibliographicCitation. “Determination of BHT (2022) Irganox 1076, and Irganox 1010 antioxidant additives in polyethylene by high performance liquid chromatography | Analytical Chemistry.” https://pubs.acs.org/ doi/pdf/10.1021/ac50059a009spa
dcterms.bibliographicCitationGómez-Contreras P, Figueroa-Lopez KJ, Hernández-Fernández J, Cortés M, Rodríguez, Ortega-Toro R (2021) “Effect of Dif ferent Essential Oils on the Properties of Edible Coatings Based on Yam (Dioscorea rotundata L.) Starch and Its Application in Strawberry (Fragaria vesca L.) Preservation,” Appl. Sci, vol. 11, no. 22, p. 11057, Nov. doi: https://doi.org/10.3390/app112211057spa
dcterms.bibliographicCitationFernández JH, Guerra Y, Cano H (Jan. 2022) Detection of Bisphe nol A and Four Analogues in Atmospheric Emissions in Petro chemical Complexes Producing Polypropylene in South America. Molecules 27 no. 15, Art. no. 15. doi: https://doi.org/10.3390/ molecules27154832spa
dcterms.bibliographicCitationExtraction of polypropylene additives (2022) and their analysis by HPLC | SpringerLink.” https://link.springer.com/arti cle/10.1007/BF02466639 (accessed Aug. 22,spa
dcterms.bibliographicCitationJordan SL, Taylor LT (Jan. 1997) HPLC separation with Solvent Elimination FTIR detection of Polymer Additives. J Chromatogr Sci 35(1):7–13. doi: https://doi.org/10.1093/chromsci/35.1.7spa
dcterms.bibliographicCitationHPLC Separation with Solvent Elimination FTIR Detection of Polymer Additives (2022) | Journal of Chromatographic Science | Oxford Academic.” https://academic.oup.com/chromsci/article/ 35/1/7/323477?login=false (accessed Aug. 22,spa
dcterms.bibliographicCitationJoaquin H-F, Juan L-M (Jan. 2022) Autocatalytic influence of dif ferent levels of arsine on the thermal stability and pyrolysis of polypropylene. J Anal Appl Pyrolysis 161:105385. doi: https:// doi.org/10.1016/j.jaap.2021.105385spa
dcterms.bibliographicCitationChacon H et al (Apr. 2022) Effect of Addition of Polyurea as an Aggregate in Mortars: analysis of microstructure and strength. Polymers 14:1753. doi: https://doi.org/10.3390/polym14091753spa
dcterms.bibliographicCitationCoutinho FMB “Estudo da interação entre as fases da mistura poliestireno/elastômeros butadiênicos: aspectos morfológicos e térmicos,” p.10spa
dcterms.bibliographicCitationIrganox 1010 - FTIR - Spectrum - SpectraBase,” Aug. 22 (2022) https://spectrabase.com/spectrum/Jmmw3OvuB3P (accessed Aug. 22, 2022)spa
dcterms.bibliographicCitationIrganox 1010 - FTIR (2022) - Spectrum - SpectraBase.” https:// spectrabase.com/spectrum/Jmmw3OvuB3Pspa
dcterms.bibliographicCitationQuimica_Organica_-_John_McMurry_-_8va_Edi cion20200311-84302-4xfc11-with-cover-page-v2. pdf.” Accessed: Aug. 22, 2022. [Online]. Avail able: https://d1wqtxts1xzle7.cloudfront.net/62339803/ Quimica_Organica_-_John_McMurry_-_8va_Edi cion20200311-84302-4xfc11-with-cover-page-v2.pdf?Ex pires=1661155451&Signature=Ovo4EwSevsD17Z1wjV8- DW5PLkQhw7CFtoDiWL8ME-Ys3SJLE64B4lvIqK9REMB 845uLHhbWz6M15dUeo1xic-SF4XfzFxSD6Vaka7kdbxumos YAWhmv2sZKjVUvW~NaHqVygICL~VFi~RWdB66iK9XSf W2K5M~sV~RHqRgLaNTiKreFDG09Vfepayi9j2sqeX~B3Y y4~fsvEPuA8oJW2z~ZYbq-aBc6qOgxm4QCgMzxPn~0GlGV uFh1FPJPi0apuuZtP438C5~acJrI6jU4jLyCjnxws5LUa6cBKep VoUxpGN7Ymn4tSe40cz032TrqjdrHtzrNj7Aa805WI5CoKpg_ _&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZAspa
dcterms.bibliographicCitation“Transport of small (1992) molecules in polyolefins. I. Diffu sion of irganox 1010 in polyethylene - Földes – 1992 - Journal of Applied Polymer Science - Wiley Online Library.” https:// onlinelibrary.wiley.com/doi/abs/10.1002/app.070460317 (accessed Aug. 22, 2022)spa
dcterms.bibliographicCitationHernández-Fernández J (2021) Quantification of arsine and phos phine in industrial atmospheric emissions in Spain and Colombia. Implementation of modified zeolites to reduce the environmental impact of emissions. Atmospheric Pollution Research 12:167– 176. https://doi.org/10.1016/j.apr.2021.01.019spa
dcterms.bibliographicCitationJoaquin H-F, Juan L (2020) Quantification of poisons for Ziegler Natta catalysts and ffects on the production of polypropylene by gas chromatographic with simultaneous etection: pulsed dis charge helium ionization, mass spectrometry, and flame oniza tion. J Chromatogr A 1614:460736. https://doi.org/10.1016/j. chroma.2019.460736spa
dcterms.bibliographicCitationHernández-Fernández J Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale.Journal of Chromatography A2020;1628. https://doi.org/10.1016/j.chroma.2020.461478spa
dcterms.bibliographicCitationHernández-Fernández J, Lopez-Martinez J (2021) Damià Bar celó. Development and validation of a methodology for quantify ing parts-per-billion levels of arsine and phosphine in nitrogen, hydrogen and liquefied petroleum gas using a variable pres sure sampler coupled to gas chromatography-mass spectrom etry. J Chromatogr A 1637:461833. https://doi.org/10.1016/j. chroma.2020.461833spa
dcterms.bibliographicCitationHernández-Fernández J, López-Martínez J (2021) Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradationspa
dcterms.bibliographicCitationHeidis, Cano (2022) John Fredy Ríos-Rojas, Joaquin Hernández Fernández, Wilson Bernal Herrera, Mayka Bautista Betancur, Lorcy De La Hoz Vélez and Lidy Agámez González. Impact of Environmental Pollution in the sustainability of Architectural Heritage: Case Study from Cartagena of India. Colombia Sustain 14:189. https://doi.org/10.3390/su14010189spa
dcterms.bibliographicCitation. Pavon C, Aldas M (2021) Joaquín Hernandez-Fernandez, Juan Lopez-Martínez. Comparative characterization of gum rosins for their use as sustainable additives in polymeric matrices. J Appl Polym Sci e51734. https://doi.org/10.1002/app.51734spa
dcterms.bibliographicCitationPavon C, Aldas M, López-Martínez J (2021) Joaquín Hernán dez-Fernández and Marina Patricia Arrieta. Films based on thermoplastic starch blended with Pine Resin derivatives for Food Packaging. Foods 10:1171. https://doi.org/10.3390/ foods10061171spa
dcterms.bibliographicCitation. Joaquín Hernández-Fernández JR, Castro-Suarez AT, Toloza (2022) Iron oxide powder as responsible for the generation of Industrial Polypropylene Waste and as a Co-Catalyst for the pyrolysis of non-additive resins. Int J Mol Sci 23:11708. https:// doi.org/10.3390/ijms231911708spa
dcterms.bibliographicCitationJoaquín H-F, Vivas-Reyes R, Carlos AT, Toloza (2022) Experi mental study of the impact of Trace amounts of Acetylene and Methylacetylene on the synthesis, Mechanical and Thermal Properties of Polypropylene. Int J Mol Sci 23:12148. https://doi. org/10.3390/ijms232012148spa
dcterms.bibliographicCitationJoaquín Hernández-Fernández Y, Guerra Esneyder Puello-Polo and Edgar Marquez. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene, Polymers 2022, 14,3123. https://doi.org/10.3390/polym14153123spa
dcterms.bibliographicCitationJoaquín Hernández-Fernández H, Cano M, Aldas Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene, Polymers 2022, 14,3910. https://doi.org/10.3390/polym14183910spa
dcterms.bibliographicCitationJoaquín Hernández–Fernández, Guerra Y, Espinosa E (2022) Development and application of a principal component analysis model to quantify the Green Ethylene Content in Virgin Impact Copolymer Resins during their synthesis on an Industrial Scale. J Polym Environ. https://doi.org/10.1007/s10924-022-02557-4spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doidoi:10.1007/s10924-023-02764-7
dc.subject.keywordsRecoveryspa
dc.subject.keywordsPhenolic compoundsspa
dc.subject.keywordsIrganox 1010spa
dc.subject.keywordsExtractionspa
dc.subject.keywordsCircularityspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.