Mostrar el registro sencillo del ítem

dc.contributor.authorHenao, Jhony Guzman
dc.contributor.authorGrisales-Noreña, Luis Fernando
dc.contributor.authorRestrepo-Cuestas, Bonie Johana
dc.contributor.authorMontoya, Oscar Danilo
dc.date.accessioned2023-05-25T20:12:41Z
dc.date.available2023-05-25T20:12:41Z
dc.date.issued2023-01-03
dc.date.submitted2023-05-25
dc.identifier.citationGuzman-Henao, J.; Grisales-Noreña, L.F.; Restrepo-Cuestas, B.J.; Montoya, O.D. Optimal Integration of Photovoltaic Systems in Distribution Networks from a Technical, Financial, and Environmental Perspective. Energies 2023, 16, 562. https://doi.org/10.3390/en16010562spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/11861
dc.description.abstractDue to the increasing demand for electricity around the world, different technologies have been developed to ensure the sustainability of each and every process involved in its production, transmission, and consumption. In addition to ensuring energy sustainability, these technologies seek to improve some of the characteristics of power systems and, in doing so, make them efficient from a financial, technical, and environmental perspective. In particular, solar photovoltaic (PV) technology is one of the power generation technologies that has had the most influence and development in recent years due to its easy implementation and low maintenance costs. Additionally, since PV systems can be located close to the load, power losses during distribution and transmission can be significantly reduced. However, in order to maximize the financial, technical, and environmental variables involved in the operation of an electrical system, a PV power generation project must guarantee the proper location and sizing of the generation sources. In the specialized literature, different studies have employed mathematical methods to determine the optimal location and size of generation sources. These methods model the operation of electrical systems and provide potential analysis scenarios following the deployment of solar PV units. The majority of such studies, however, do not assess the quality and repeatability of the solutions in short processing times. In light of this, the purpose of this study is to review the literature and contributions made in the field.spa
dc.format.extent19 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceEnergies Vol. 16 No. 1 (2023)spa
dc.titleOptimal Integration of Photovoltaic Systems in Distribution Networks from a Technical, Financial, and Environmental Perspectivespa
dcterms.bibliographicCitationRahman, A.; Farrok, O.; Haque, M.M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew. Sustain. Energy Rev. 2022, 161, 112279.spa
dcterms.bibliographicCitationGutiérrez, A.S.; Morejón, M.B.; Eras, J.J.C.; Ulloa, M.C.; Martínez, F.J.R.; Rueda-Bayona, J.G. Data supporting the forecast of electricity generation capacity from non-conventional renewable energy sources in Colombia. Data Brief 2020, 28, 104949.spa
dcterms.bibliographicCitationSchaube, P.; Ise, A.; Clementi, L. Distributed photovoltaic generation in Argentina: An analysis based on the technical innovation system framework. Technol. Soc. 2022, 68, 101839.spa
dcterms.bibliographicCitationKang, S.H.; Islam, F.; Tiwari, A.K. The dynamic relationships among CO2 emissions, renewable and non-renewable energy sources, and economic growth in India: Evidence from time-varying Bayesian VAR model. Struct. Chang. Econ. Dyn. 2019, 50, 90–101.spa
dcterms.bibliographicCitationLondoño Posso, J.M.; Hincapié Isaza, R.A.; Gallego Rendón, R.A. Planeamiento de redes de baja tensión, utilizando un modelo trifásico. Cienc. E Ing. Neogranadina 2011, 21, 41–53.spa
dcterms.bibliographicCitationYoshizawa, S.; Yamamoto, Y.; Yoshinaga, J.; Hayashi, Y.; Sasaki, S.; Shigetou, T.; Nomura, H. Novel voltage control of multiple step voltage regulators in a distribution system. In Proceedings of the 2014 IEEE PES Innovative Smart Grid Technologies Conference, ISGT 2014, Istanbul, Turkey, 12–15 October 2014.spa
dcterms.bibliographicCitationAckermann, T.; Andersson, G.; Söder, L. Distributed generation: A definition. Electr. Power Syst. Res. 2001, 57, 195–204spa
dcterms.bibliographicCitationDas, U.K.; Tey, K.S.; Seyedmahmoudian, M.; Mekhilef, S.; Idris, M.Y.I.; Deventer, W.V.; Horan, B.; Stojcevski, A. Forecasting of photovoltaic power generation and model optimization: A review. Renew. Sustain. Energy Rev. 2018, 81, 912–928spa
dcterms.bibliographicCitationBalamurugan, K.; Srinivasan, D.; Reindl, T. Impact of distributed generation on power distribution systems. Energy Procedia 2012, 25, 93–100.spa
dcterms.bibliographicCitationBayer, Christophe Pierre, Fionna Klasen, and Hubertus Adam. 2007. “Association of Trauma and PTSD Symptoms with Openness to Reconciliation and Feelings of Revenge Among Former Ugandan and Congolese Child Soldiers.” Journal of the American Medical Association 298 (5): 555-559. https://doi.org/10.1001/jama.298.5.555 8.spa
dcterms.bibliographicCitationHassan, A.S.; Othman, E.S.A.; Bendary, F.M.; Ebrahim, M.A. Optimal integration of distributed generation resources in active distribution networks for techno-economic benefits. Energy Rep. 2020, 6, 3462–3471.spa
dcterms.bibliographicCitationAckermann, T.; Andersson, G.; Söder, L. Distributed generation: A definition. Electr. Power Syst. Res. 2001, 57, 195–204.spa
dcterms.bibliographicCitationAntonio, M.; Camargo, C.; Javier, W.; Ramirez, H. Atlas Potencial Hidroenergético de Colombia. UPME. 2015; pp. 1–24. ISBN 9789587168471. Available online: http://bdigital.upme.gov.co/handle/001/1336 (accessed on 8 October 2022).spa
dcterms.bibliographicCitationFang, J.; Li, G.; Liang, X.; Zhou, M. An optimal control strategy for reactive power in wind farms consisting of VSCF DFIG wind turbine generator systems. In Proceedings of the DRPT 2011—2011 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, Weihai, China, 6–9 July 2011; pp. 1709–1715.spa
dcterms.bibliographicCitationClementi, L.V.; Jacinto, G.P. Energía distribuida: Oportunidades y desafíos en Argentina. Let. Verdes Rev. Latinoam. Estud. Socioambientales 2021, 29, 48–64.spa
dcterms.bibliographicCitationUPME. Resolución 703, 2018. Bogotá, Colombia. Dirección de la Unidad de Planeación Minero-Energética. Available online: https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_upme_0703_2018.htm (accessed on 15 August 2022).spa
dcterms.bibliographicCitationRondina, J.M.; Martins, N.L.; Alves, M.B. Technology Alternative for Enabling Distributed Generation. IEEE Lat. Am. Trans. 2016, 14, 4089–4096.spa
dcterms.bibliographicCitationAkinyele, D.O.; Rayudu, R.K.; Nair, N.K. Global progress in photovoltaic technologies and the scenario of development of solar panel plant and module performance estimation—Application in Nigeria. Renew. Sustain. Energy Rev. 2015, 48, 112–139.spa
dcterms.bibliographicCitationAhmed, M.T.; Gonçalves, T.; Tlemcani, M. Single diode model parameters analysis of photovoltaic cell. In Proceedings of the 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), Birmingham, UK, 20–23 November 2016; Volume 5, pp. 396–40spa
dcterms.bibliographicCitationSaeednia, M.M.; Ezoji, H. Reviewing the Effect of Distributed Generation Interconnections on Distribution Systems. 23rd International Power System Conference (PSC 2007). pp. 1–10. Available online: https://civilica.com/doc/130952/ (accessed on 7 July 2022).spa
dcterms.bibliographicCitationJannat, M.B.; Savi´c, A.S. Optimal capacitor placement in distribution networks regarding uncertainty in active power load and distributed generation units production. IET Gener. Transm. Distrib. 2016, 10, 3060–3067.spa
dcterms.bibliographicCitationBianco, V.; Manca, O.; Nardini, S. Electricity consumption forecasting in Italy using linear regression models. Energy 2009, 34, 1413–1421spa
dcterms.bibliographicCitationZhu, Y.; Hjalmarsson, H. The Box-Jenkins Steiglitz-McBride algorithm. Automatica 2016, 65, 170–182spa
dcterms.bibliographicCitationSun, H.; Qiu, Y.; Li, J. A novel artificial neural network model for wide-band random fatigue life prediction. Int. J. Fatigue 2022, 157, 106701spa
dcterms.bibliographicCitationYumurtaci, Z.; Asmaz, E. Electric energy demand of Turkey for the year 2050. Energy Sources 2004, 26, 1157–1164.spa
dcterms.bibliographicCitationkaytez, F.; Taplamacioglu, M.C.; Cam, E.; Hardalac, F. Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines. Int. J. Electr. Power Energy Syst. 2015, 67, 431–438.spa
dcterms.bibliographicCitationDiaz-Acevedo, J.A.; Grisales-Noreña, L.F.; Escobar, A. A method for estimating electricity consumption patterns of buildings to implement Energy Management Systems. J. Build. Eng. 2019, 25, 100774spa
dcterms.bibliographicCitationVelez Marin, V.M. Planeamiento de Sistemas Secundarios de Distribución Considerando el Concepto de Demanda Diversificada; Universidad Tecnológica de Pereira: Pereira, Colombia, 2013.spa
dcterms.bibliographicCitationInman, R.H.; Pedro, H.T.; Coimbra, C.F. Solar forecasting methods for renewable energy integration. Prog. Energy Combust. Sci. 2013, 39, 535–576spa
dcterms.bibliographicCitationBeltrán, J.C.; Aristizábal, A.J.; López, A.; Castaneda, M.; Zapata, S.; Ivanova, Y. Comparative analysis of deterministic and probabilistic methods for the integration of distributed generation in power systems. Energy Rep. 2020, 6, 88–10spa
dcterms.bibliographicCitationRahmani-Andebili, M. Stochastic, adaptive, and dynamic control of energy storage systems integrated with renewable energy sources for power loss minimization. Renew. Energy 2017, 113, 1462–1471spa
dcterms.bibliographicCitationAlencar, D.B.D.; Affonso, C.D.M.; Oliveira, R.C.L.D.; Rodríguez, J.L.M.; Leite, J.C.; Filho, J.C.R. Different Models for Forecasting Wind Power Generation: Case Study. Energies 2017, 10, 1976.spa
dcterms.bibliographicCitationZhou, K.; Fu, C.; Yang, S. Big data driven smart energy management: From big data to big insights. Renew. Sustain. Energy Rev. 2016, 56, 215–225.spa
dcterms.bibliographicCitationHernandez, J.A.; Velasco, D.; Trujillo, C.L. Analysis of the effect of the implementation of photovoltaic systems like option of distributed generation in Colombia. Renew. Sustain. Energy Rev. 2011, 15, 2290–2298.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems. Electr. Power Syst. Res. 2020, 187, 106454.spa
dcterms.bibliographicCitationBarrero Gonzalez, F. Sistemas de Energia Electrica; Editorial Paraninfo S.A.: Madrid, Spain, 2004spa
dcterms.bibliographicCitationGrainger, J.J.; Stevenson, W.D. Analisis de Sistemas de Potencia; McGraw-Hill Mexico: Mexico City, Mexico, 1996.spa
dcterms.bibliographicCitationMercado, D. Análisis de Sensibilidad del Resultado del Flujo de Carga en Sistemas de Distribucion ante Incertidumbre en el Modelo Eléctrico; Facultad de Ingenierias, Universidad Nacional de Colombia: Bogota, Colombia, 2011; p. 135spa
dcterms.bibliographicCitationUniversidad Nacional Autónoma de México (UNAM); González, P.; Cárdenas, M.; Pinilla, V.; Salazar, A.; Tovar, V. Métodos iterativos de Jacobi y Gauss–Seidel. Ingenieria. Unam 2019, 1–9. Available online: https://www.ingenieria.unam.mx/pinilla/PE1 05117/pdfs/tema3/3-3_metodos_jacobi_gauss-seidel.pdf (accessed on 10 October 2022).spa
dcterms.bibliographicCitationTapasco Suarez, K.P. Aproximaciones al Flujo de Carga en Sistemas de Distribución; Universidad Tecnologica de Pereira: Pereira, Colombia, 2017.spa
dcterms.bibliographicCitationVigil, J.C. Application of Numerical Methods To Solve Nonlinear Equations for Sea Wave Modeling. Curso CE0607 Análisis Numérico. 2011. Available online: https://docplayer.es/48346600-Application-of-numerical-methods-to-solve-nonlinear equations-for-sea-wave-modeling.html (accessed on 5 May 2022).spa
dcterms.bibliographicCitationGrainger, J.J. Power System Analysis; McGraw-Hill: New York, NY, USA, 1999.spa
dcterms.bibliographicCitationDinh, H.N.; Yoon, Y.T. A novel method for solving the divergence of power flow and controlling voltage in integrated distributed generators network. IEEE Power Energy Soc. Gen. Meet. 2012, 1–5.spa
dcterms.bibliographicCitationSharma, D.; Singh, P. Optimal Planning of Distribute Energy Resources Sizing and Location Problem—A Review. In Proceedings of the 2nd International Conference on Inventive Research in Computing Applications, ICIRCA 2020, Coimbatore, India, 15–17 July 2020; pp. 500–504spa
dcterms.bibliographicCitationKansal, S.; Kumar, V.; Tyagi, B. Optimal placement of different type of DG sources in distribution networks. Int. J. Electr. Power Energy Syst. 2013, 53, 752–760spa
dcterms.bibliographicCitationGhosh, S.; Ghoshal, S.P.; Ghosh, S. Optimal sizing and placement of distributed generation in a network system. Int. J. Electr. Power Energy Syst. 2010, 32, 849–856.spa
dcterms.bibliographicCitationRendon, R.A.G.; Zuluaga, A.H.E.; Ocampo, E.M.T. Tecnicas Metaheuristicas de Optimizacion; Universidad Tecnologica de Pereira: Pereira, Colombia, 2008.spa
dcterms.bibliographicCitationGeorgilakis, P.S.; Hatziargyriou, N.D. Optimal distributed generation placement in power distribution networks: Models, methods, and future research. IEEE Trans. Power Syst. 2013, 28, 3420–3428.spa
dcterms.bibliographicCitationNoreña, L.F.G.; Cuestas, B.J.R.; Ramirez, F.E.J. Ubicación y dimensionamiento de generación distribuida: Una revisión. Cienc. E Ing. Neogranadina 2017, 27, 157–176.spa
dcterms.bibliographicCitationWang, C.; Nehrir, M.H. Analytical approaches for optimal placement of distributed generation sources in power systems. IEEE Trans. Power Syst. 2004, 19, 2068–2076.spa
dcterms.bibliographicCitationKhalesi, N.; Rezaei, N.; Haghifam, M.R. DG allocation with application of dynamic programming for loss reduction and reliability improvement. Int. J. Electr. Power Energy Syst. 2011, 33, 288–295.spa
dcterms.bibliographicCitationSingh, B.; Mukherjee, V.; Tiwari, P. A survey on impact assessment of DG and FACTS controllers in power systems. Renew. Sustain. Energy Rev. 2015, 42, 846–882spa
dcterms.bibliographicCitationPorkar, S.; Poure, P.; Abbaspour-Tehrani-fard, A.; Saadate, S. Optimal allocation of distributed generation using a two-stage multi-objective mixed-integer-nonlinear programming. Eur. Trans. Electr. Power 2011, 21, 1072–1087spa
dcterms.bibliographicCitationZhou, Z.; Zhang, J.; Liu, P.; Li, Z.; Georgiadis, M.C.; Pistikopoulos, E.N. A two-stage stochastic programming model for the optimal design of distributed energy systems. Appl. Energy 2013, 103, 135–144.spa
dcterms.bibliographicCitationFoster, J.D.; Berry, A.M.; Boland, N.; Waterer, H. Comparison of mixed-integer programming and genetic algorithm methods for distributed generation planning. IEEE Trans. Power Syst. 2014, 29, 833–843.spa
dcterms.bibliographicCitationLiu, L.; Mu, H.; Song, Y.; Luo, H.; Li, X.; Wu, F. The equilibrium generalized assignment problem and genetic algorithm. Appl. Math. Comput. 2012, 218, 6526–6535.spa
dcterms.bibliographicCitationMohammadi, M.A.Y.; Faramarzi, M. PSO algorithm for sitting and sizing of distributed generation to improve voltage profile and decreasing power losses. In Proceedings of the 17th Conference on Electrical Power Distribution, Tehran, Iran, 2–3 May 2012; pp. 1–5.spa
dcterms.bibliographicCitationAmritha, K.; Rajagopal, V.; Raju, K.N.; Arya, S.R. Ant lion algorithm for optimized controller gains for power quality enrichment of off-grid wind power harnessing units. Chin. J. Electr. Eng. 2020, 6, 85–97. [CrossRef]spa
dcterms.bibliographicCitationWang, L.; Shi, Z.; Wang, Z. Reactive Power Optimization for Power System with Distributed Generations Using PSO Hybrid SCA Algorithm. In Proceedings of the IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS), Suzhou, China, 14–16 May 2021; pp. 248–253.spa
dcterms.bibliographicCitationGözel, T.; Hocaoglu, M.H. An analytical method for the sizing and siting of distributed generators in radial systems. Electr. Power Syst. Res. 2009, 79, 912–918.spa
dcterms.bibliographicCitationAcharya, N.; Mahat, P.; Mithulananthan, N. An analytical approach for DG allocation in primary distribution network. Int. J. Electr. Power Energy Syst. 2006, 28, 669–678spa
dcterms.bibliographicCitationGil-González, W.; Garces, A.; Montoya, O.D.; Hernández, J.C. A mixed-integer convex model for the optimal placement and sizing of distributed generators in power distribution networks. Appl. Sci. 2021, 11, 627spa
dcterms.bibliographicCitationNaik, S.N.G.; Khatod, D.K.; Sharma, M.P. Analytical approach for optimal siting and sizing of distributed generation in radial distribution networks. IET Gener. Transm. Distrib. 2015, 9, 209–220.spa
dcterms.bibliographicCitationMahmoud, K.; Yorino, N.; Ahmed, A. Optimal Distributed Generation Allocation in Distribution Systems for Loss Minimization. IEEE Trans. Power Syst. 2016, 31, 960–969spa
dcterms.bibliographicCitationKoutsoukis, N.C.; Siagkas, D.O.; Georgilakis, P.S.; Hatziargyriou, N.D. Online Reconfiguration of Active Distribution Networks for Maximum Integration of Distributed Generation. IEEE Trans. Autom. Sci. Eng. 2017, 14, 437–448.spa
dcterms.bibliographicCitationKhoa, T.Q.D.; Binh, P.; Tran, H. Optimizing location and sizing of distributed generation in distribution systems. In Proceedings of the 2006 IEEE PES Power Systems Conference and Exposition, Atlanta, GA, USA, 29 October–1 November 2006; pp. 725–732.spa
dcterms.bibliographicCitationAbdel-Akher, M.; Ali, A.; Eid, A.; El-Kishky, H. Optimal size and location of distributed generation unit for voltage stability enhancement. In Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition, Detroit, MI, USA, 9–13 October 2011; pp. 104–108.spa
dcterms.bibliographicCitationKaur, S.; Kumbhar, G.; Sharma, J. A MINLP technique for optimal placement of multiple DG units in distribution systems. Int. J. Electr. Power Energy Syst. 2014, 63, 609–617.spa
dcterms.bibliographicCitationOuyang, W.; Cheng, H.; Zhang, X.; Yao, L. Distribution network planning method considering distributed generation for peak cutting. Energy Convers. Manag. 2010, 51, 2394–2401.spa
dcterms.bibliographicCitationMohamed, I.A.; Kowsalya, M. Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization. Swarm Evol. Comput. 2014, 15, 58–65.spa
dcterms.bibliographicCitationGarcía-Muñoz, F.; Díaz-González, F.; Corchero, C. A two-stage stochastic programming model for the sizing and location of DERs considering electric vehicles and demand response. Sustain. Energy Grids Networks 2022, 30, 100624.spa
dcterms.bibliographicCitationWu, D.; Ma, X.; Huang, S.; Fu, T.; Balducci, P. Stochastic optimal sizing of distributed energy resources for a cost-effective and resilient Microgrid. Energy 2020, 198, 117284.spa
dcterms.bibliographicCitationBacca, E.J.M.; Knight, A.; Trifkovic, M. Optimal land use and distributed generation technology selection via geographic-based multicriteria decision analysis and mixed-integer programming. Sustain. Cities Soc. 2020, 55, 102055.spa
dcterms.bibliographicCitationGarcía-Muñoz, F.; Díaz-González, F.; Corchero, C. A novel algorithm based on the combination of AC-OPF and GA for the optimal sizing and location of DERs into distribution networks. Sustain. Energy Grids Networks 2021, 27, 100497.spa
dcterms.bibliographicCitationGautam, M.; Bhusal, N.; Benidris, M. A Cooperative Game Theory-based Approach to Sizing and Siting of Distributed Energy Resources. In Proceedings of the 2021 North American Power Symposium (NAPS), College Station, TX, USA, 14–16 November 2021; pp. 1–6.spa
dcterms.bibliographicCitationMontoya, O.D.; Grisales-Noreña, L.F.; Gil-González, W.; Alcalá, G.; Hernandez-Escobedo, Q. Optimal location and sizing of PV sources in DC networks for minimizing greenhouse emissions in diesel generators. Symmetry 2020, 12, 322spa
dcterms.bibliographicCitationMolina-Martin, F.; Montoya, O.D.; Grisales-Noreña, L.F.; Hernández, J.C.; Ramírez-Vanegas, C.A. Simultaneous minimization of energy losses and greenhouse gas emissions in ac distribution networks using bess. Electronics 2021, 10, 1002.spa
dcterms.bibliographicCitationQian, K.; Zhou, C.; Yuan, Y.; Shi, X.; Allan, M. Analysis of the environmental benefits of distributed generation. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, IEEE, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–5spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doihttps://doi.org/10.3390/en16010562
dc.subject.keywordsSustainabilityspa
dc.subject.keywordsGenerationspa
dc.subject.keywordsPhotovoltaic solar energyspa
dc.subject.keywordsPower lossesspa
dc.subject.keywordsLocationspa
dc.subject.keywordsSizingspa
dc.subject.keywordsMathematical methodsspa
dc.subject.keywordsRepeatabilityspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.