Mostrar el registro sencillo del ítem

dc.contributor.authorGrisales-Noreña, Luis Fernando
dc.contributor.authorRosales-Muñoz, Andres alfonso
dc.contributor.authorMontoya, Oscar Danilo
dc.date.accessioned2023-05-24T21:14:06Z
dc.date.available2023-05-24T21:14:06Z
dc.date.issued2023-01-27
dc.date.submitted2023-05-24
dc.identifier.citationGrisales-Noreña, L.F.; Rosales-Muñoz, A.A.; Montoya, O.D. An Effective Power Dispatch of Photovoltaic Generators in DC Networks via the Antlion Optimizer. Energies 2023, 16, 1350. https:// doi.org/10.3390/10.3390/ en16031350spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/11855
dc.description.abstractThis paper studies the problem regarding the optimal power dispatch of photovoltaic (PV) distributed generators (DGs) in Direct Current (DC) grid-connected and standalone networks. The mathematical model employed considers the reduction of operating costs, energy losses, and CO2 emissions as objective functions, and it integrates all technical and operating constraints implied by DC grids in a scenario of variable PV generation and power demand. As a solution methodology, a master–slave strategy was proposed, whose master stage employs Antlion Optimizer (ALO) for identifying the values of power to be dispatched by each PV-DG installed in the grid, whereas the slave stage uses a matrix hourly power flow method based on successive approximations to evaluate the objective functions and constraints associated with each solution proposed within the iterative process of the ALO. Two test scenarios were considered: a grid-connected network that considers the operating characteristics of the city of Medellín, Antioquia, and a standalone network that uses data from the municipality of Capurganá, Chocó, both of them located in Colombia. As comparison methods, five continuous optimization methods were used which were proposed in the specialized literature to solve optimal power flow problems in DC grids: the crow search algorithm, the particle swarm optimization algorithm, the multiverse optimization algorithm, the salp swarm algorithm, and the vortex search algorithm. The effectiveness of the proposed method was evaluated in terms of the solution, its repeatability, and its processing times, and it obtained the best results with respect to the comparison methods for both grid types. The simulation results obtained for both test systems evidenced that the proposed methodology obtained the best results with regard to the solution, with short processing times for all of the objective functions analyzed.spa
dc.format.extent28 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceEnergies Vol. 16 No. 3 (2023)spa
dc.titleAn Effective Power Dispatch of Photovoltaic Generators in DC Networks via the Antlion Optimizerspa
dcterms.bibliographicCitationHernandez, J.; Velasco, D.; Trujillo, C. Analysis of the effect of the implementation of photovoltaic systems like option of distributed generation in Colombia. Renew. Sustain. Energy Rev. 2011, 15, 2290–2298.spa
dcterms.bibliographicCitationDong, J.; Feng, T.T.; Sun, H.X.; Cai, H.X.; Li, R.; Yang, Y. Clean distributed generation in China: Policy options and international experience. Renew. Sustain. Energy Rev. 2016, 57, 753–764spa
dcterms.bibliographicCitationBoumaiza, A.; Sanfilippo, A.; Mohandes, N. Modeling multi-criteria decision analysis in residential PV adoption. Energy Strategy Rev. 2022, 39, 100789.spa
dcterms.bibliographicCitationZhao, Z.Y.; Zhang, S.Y.; Hubbard, B.; Yao, X. The emergence of the solar photovoltaic power industry in China. Renew. Sustain. Energy Rev. 2013, 21, 229–236spa
dcterms.bibliographicCitationChang, G.W.; Chinh, N.C. Coyote optimization algorithm-based approach for strategic planning of photovoltaic distributed generation. IEEE Access 2020, 8, 36180–36190spa
dcterms.bibliographicCitationSingh, G.K. Solar power generation by PV (photovoltaic) technology: A review. Energy 2013, 53, 1–13spa
dcterms.bibliographicCitationSolargis Solar Resource Maps of Colombia. Available online: https://solargis.com/maps-and-gis-data/download/colombia (accessed on 22 November 2022).spa
dcterms.bibliographicCitationRakhshani, E.; Rouzbehi, K.; J. Sánchez, A.; Tobar, A.C.; Pouresmaeil, E. Integration of large scale PV-based generation into power systems: A survey. Energies 2019, 12, 1425.spa
dcterms.bibliographicCitationDíaz González, J.J. Viabilidad Regulatoria para Implementar Sistemas de Micro Redes Con Fuentes No Convencionales de Energía Renovable–FNCER–por Intercolombia SAESP. 2018. Available online: http://bibliotecavirtualoducal.uc.cl/vufind/Record/oai: localhost:10185-28863 (accessed on 24 January 2023).spa
dcterms.bibliographicCitationMoreno, C.; Milanes, C.B.; Arguello, W.; Fontalvo, A.; Alvarez, R.N. Challenges and perspectives of the use of photovoltaic solar energy in Colombia. Int. J. Electr. Comput. Eng. 2022, 12, 4521–4528.spa
dcterms.bibliographicCitationDe Brito, M.A.G.; Galotto, L.; Sampaio, L.P.; e Melo, G.d.A.; Canesin, C.A. Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Trans. Ind. Electron. 2012, 60, 1156–1167spa
dcterms.bibliographicCitationMishra, V.L.; Chauhan, Y.K.; Verma, K. A critical review on advanced reconfigured models and metaheuristics-based MPPT to address complex shadings of solar array. Energy Convers. Manag. 2022, 269, 116099.spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Montoya, O.D.; Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. J. Energy Storage 2020, 29, 101488.spa
dcterms.bibliographicCitationLi, C.; De Bosio, F.; Chen, F.; Chaudhary, S.K.; Vasquez, J.C.; Guerrero, J.M. Economic dispatch for operating cost minimization under real-time pricing in droop-controlled DC microgrid. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 5, 587–595.spa
dcterms.bibliographicCitationYounes, Z.; Alhamrouni, I.; Mekhilef, S.; Reyasudin, M. A memory-based gravitational search algorithm for solving economic dispatch problem in micro-grid. Ain Shams Eng. J. 2021, 12, 1985–1994.spa
dcterms.bibliographicCitationTan, Q.; Ding, Y.; Ye, Q.; Mei, S.; Zhang, Y.; Wei, Y. Optimization and evaluation of a dispatch model for an integrated wind-photovoltaic-thermal power system based on dynamic carbon emissions trading. Appl. Energy 2019, 253, 113598.spa
dcterms.bibliographicCitationGao, S.; Jia, H.; Marnay, C. Techno-economic evaluation of mixed AC and DC power distribution network for integrating large-scale photovoltaic power generation. IEEE Access 2019, 7, 105019–105029.spa
dcterms.bibliographicCitationLin, J.C.W.; Liu, Q.; Fournier-Viger, P.; Hong, T.P.; Voznak, M.; Zhan, J. A sanitization approach for hiding sensitive itemsets based on particle swarm optimization. Eng. Appl. Artif. Intell. 2016, 53, 1–18.spa
dcterms.bibliographicCitationLin, J.C.W.; Yang, L.; Fournier-Viger, P.; Wu, J.M.T.; Hong, T.P.; Wang, L.S.L.; Zhan, J. Mining high-utility itemsets based on particle swarm optimization. Eng. Appl. Artif. Intell. 2016, 55, 320–330spa
dcterms.bibliographicCitationSpea, S.R. Combined economic emission dispatch solution of an isolated renewable integrated micro-grid using crow search algorithm. In Proceedings of the 2019 21st International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 17–19 December 2019; pp. 47–52.spa
dcterms.bibliographicCitationRosales-Muñoz, A.A.; Grisales-Noreña, L.F.; Montano, J.; Montoya, O.D.; Perea-Moreno, A.J. Application of the multiverse optimization method to solve the optimal power flow problem in direct current electrical networks. Sustainability 2021, 13, 8703.spa
dcterms.bibliographicCitationVelasquez, O.S.; Montoya Giraldo, O.D.; Garrido Arevalo, V.M.; Grisales Norena, L.F. Optimal power flow in direct-current power grids via black hole optimization. Adv. Electr. Electron. Eng. 2019, 17, 24–32.spa
dcterms.bibliographicCitationRosales Muñoz, A.A.; Grisales-Noreña, L.F.; Montano, J.; Montoya, O.D.; Giral-Ramírez, D.A. Optimal Power Dispatch of Distributed Generators in Direct Current Networks Using a Master–Slave Methodology That Combines the Salp Swarm Algorithm and the Successive Approximation Method. Electronics 2021, 10, 2837.spa
dcterms.bibliographicCitationGarzon-Rivera, O.; Ocampo, J.; Grisales-Noreña, L.; Montoya, O.; Rojas-Montano, J. Optimal power flow in Direct Current Networks using the antlion optimizer. Stat. Optim. Inf. Comput. 2020, 8, 846–857.spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Ocampo-Toro, J.A.; Rosales-Muñoz, A.A.; Cortes-Caicedo, B.; Montoya, O.D. An Energy Management System for PV Sources in Standalone and Connected DC Networks Considering Economic, Technical, and Environmental Indices. Sustainability 2022, 14, 16429.spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Ramos-Paja, C.A.; Gonzalez-Montoya, D.; Alcalá, G.; Hernandez-Escobedo, Q. Energy management in PV based microgrids designed for the Universidad Nacional de Colombia. Sustainability 2020, 12, 1219.spa
dcterms.bibliographicCitationGbadamosi, S.L.; Nwulu, N.I. Optimal power dispatch and reliability analysis of hybrid CHP-PV-wind systems in farming applications. Sustainability 2020, 12, 8199. [spa
dcterms.bibliographicCitationLuna, A.C.; Diaz, N.L.; Andrade, F.; Graells, M.; Guerrero, J.M.; Vasquez, J.C. Economic power dispatch of distributed generators in a grid-connected microgrid. In Proceedings of the 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, Korea, 1–5 June 2015; pp. 1161–1168.spa
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Holguín, E.; Garces, A.; Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J. Energy Storage 2019, 21, 1–8.spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Rosales-Muñoz, A.A.; Cortés-Caicedo, B.; Montoya, O.D.; Andrade, F. Optimal Operation of PV Sources in DC Grids for Improving Technical, Economical, and Environmental Conditions by Using Vortex Search Algorithm and a Matrix Hourly Power Flow. Mathematics 2023, 11, 93.spa
dcterms.bibliographicCitationLin, C.W.; Hong, T.P.; Yang, K.T.; Wang, S.L. The GA-based algorithms for optimizing hiding sensitive itemsets through transaction deletion. Appl. Intell. 2015, 42, 210–230.spa
dcterms.bibliographicCitationLin, J.C.W.; Zhang, Y.; Zhang, B.; Fournier-Viger, P.; Djenouri, Y. Hiding sensitive itemsets with multiple objective optimization. Soft Comput. 2019, 23, 12779–12797.spa
dcterms.bibliographicCitationNASA. NASA Prediction of Worldwide Energy Resources, Washington, DC, United States. Available online: https://power.larc. nasa.gov/ (accessed on 21 September 2022).spa
dcterms.bibliographicCitationXM SA ESP. Sinergox Database, Colombia. Available online: https://sinergox.xm.com.co/Paginas/Home.aspx (accessed on 21 September 2022).spa
dcterms.bibliographicCitationInstituto de Planificación y Promoción de Soluciones Energéticas para Zonas No Interconectadas. Informes Mensuales de Te limetría, Colombia. Available online: https://ipse.gov.cospa
dcterms.bibliographicCitationZolghadr-Asli, B.; Bozorg-Haddad, O.; Chu, X. Crow search algorithm (CSA). In Advanced Optimization by Nature-Inspired Algorithms; Springer: Berlin/Heidelberg, Germany, 2018; pp. 143–149.spa
dcterms.bibliographicCitationKennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.spa
dcterms.bibliographicCitationMirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513.spa
dcterms.bibliographicCitationMirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191.spa
dcterms.bibliographicCitationDo ˘gan, B.; Ölmez, T. A new metaheuristic for numerical function optimization: Vortex Search algorithm. Inf. Sci. 2015, 293, 125–145.spa
dcterms.bibliographicCitationMirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98.spa
dcterms.bibliographicCitationMirjalili, S.; Jangir, P.; Saremi, S. Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving engineering problems. Appl. Intell. 2017, 46, 79–95.spa
dcterms.bibliographicCitationYang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: 2010spa
dcterms.bibliographicCitationFalaghi, H.; Ramezani, M.; Haghifam, M.R.; Milani, K.R. Optimal selection of conductors in radial distribution systems with time varying load. In Proceedings of the CIRED 2005-18th International Conference and Exhibition on Electricity Distribution, Turin, Italy, 6–9 June 2005; pp. 1–4.spa
dcterms.bibliographicCitationGrisales-Noreña, L.; Montoya-Giraldo, O.; Gil-González, W. Optimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology: Genetic and Vortex Search Algorithms. Arab. J. Sci. Eng. 2022, 47, 14657–14672.spa
dcterms.bibliographicCitationAbou El Ela, A.; El-Sehiemy, R.A.; Shaheen, A.; Shalaby, A. Application of the crow search algorithm for economic environmental dispatch. In Proceedings of the 2017 nineteenth international Middle East power systems conference (MEPCON), Cairo, Egypt, 19–21 December 2017; pp. 78–83.spa
dcterms.bibliographicCitationVerma, S.; Shiva, C.K. A novel salp swarm algorithm for expansion planning with security constraints. Iran. J. Sci. Technol. Trans. Electr. Eng. 2020, 44, 1335–1344.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doihttps:// doi.org/10.3390/10.3390/ en16031350
dc.subject.keywordsDirect current gridsspa
dc.subject.keywordsGrid-connected networkspa
dc.subject.keywordsStandalone networkspa
dc.subject.keywordsOptimizationspa
dc.subject.keywordsDistributed generationspa
dc.subject.keywordsPhotovoltaic generationspa
dc.subject.keywordsOperating costsspa
dc.subject.keywordsEnergy lossesspa
dc.subject.keywordsCO2 emissionsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.