Mostrar el registro sencillo del ítem
An Effective Power Dispatch of Photovoltaic Generators in DC Networks via the Antlion Optimizer
dc.contributor.author | Grisales-Noreña, Luis Fernando | |
dc.contributor.author | Rosales-Muñoz, Andres alfonso | |
dc.contributor.author | Montoya, Oscar Danilo | |
dc.date.accessioned | 2023-05-24T21:14:06Z | |
dc.date.available | 2023-05-24T21:14:06Z | |
dc.date.issued | 2023-01-27 | |
dc.date.submitted | 2023-05-24 | |
dc.identifier.citation | Grisales-Noreña, L.F.; Rosales-Muñoz, A.A.; Montoya, O.D. An Effective Power Dispatch of Photovoltaic Generators in DC Networks via the Antlion Optimizer. Energies 2023, 16, 1350. https:// doi.org/10.3390/10.3390/ en16031350 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/11855 | |
dc.description.abstract | This paper studies the problem regarding the optimal power dispatch of photovoltaic (PV) distributed generators (DGs) in Direct Current (DC) grid-connected and standalone networks. The mathematical model employed considers the reduction of operating costs, energy losses, and CO2 emissions as objective functions, and it integrates all technical and operating constraints implied by DC grids in a scenario of variable PV generation and power demand. As a solution methodology, a master–slave strategy was proposed, whose master stage employs Antlion Optimizer (ALO) for identifying the values of power to be dispatched by each PV-DG installed in the grid, whereas the slave stage uses a matrix hourly power flow method based on successive approximations to evaluate the objective functions and constraints associated with each solution proposed within the iterative process of the ALO. Two test scenarios were considered: a grid-connected network that considers the operating characteristics of the city of Medellín, Antioquia, and a standalone network that uses data from the municipality of Capurganá, Chocó, both of them located in Colombia. As comparison methods, five continuous optimization methods were used which were proposed in the specialized literature to solve optimal power flow problems in DC grids: the crow search algorithm, the particle swarm optimization algorithm, the multiverse optimization algorithm, the salp swarm algorithm, and the vortex search algorithm. The effectiveness of the proposed method was evaluated in terms of the solution, its repeatability, and its processing times, and it obtained the best results with respect to the comparison methods for both grid types. The simulation results obtained for both test systems evidenced that the proposed methodology obtained the best results with regard to the solution, with short processing times for all of the objective functions analyzed. | spa |
dc.format.extent | 28 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Energies Vol. 16 No. 3 (2023) | spa |
dc.title | An Effective Power Dispatch of Photovoltaic Generators in DC Networks via the Antlion Optimizer | spa |
dcterms.bibliographicCitation | Hernandez, J.; Velasco, D.; Trujillo, C. Analysis of the effect of the implementation of photovoltaic systems like option of distributed generation in Colombia. Renew. Sustain. Energy Rev. 2011, 15, 2290–2298. | spa |
dcterms.bibliographicCitation | Dong, J.; Feng, T.T.; Sun, H.X.; Cai, H.X.; Li, R.; Yang, Y. Clean distributed generation in China: Policy options and international experience. Renew. Sustain. Energy Rev. 2016, 57, 753–764 | spa |
dcterms.bibliographicCitation | Boumaiza, A.; Sanfilippo, A.; Mohandes, N. Modeling multi-criteria decision analysis in residential PV adoption. Energy Strategy Rev. 2022, 39, 100789. | spa |
dcterms.bibliographicCitation | Zhao, Z.Y.; Zhang, S.Y.; Hubbard, B.; Yao, X. The emergence of the solar photovoltaic power industry in China. Renew. Sustain. Energy Rev. 2013, 21, 229–236 | spa |
dcterms.bibliographicCitation | Chang, G.W.; Chinh, N.C. Coyote optimization algorithm-based approach for strategic planning of photovoltaic distributed generation. IEEE Access 2020, 8, 36180–36190 | spa |
dcterms.bibliographicCitation | Singh, G.K. Solar power generation by PV (photovoltaic) technology: A review. Energy 2013, 53, 1–13 | spa |
dcterms.bibliographicCitation | Solargis Solar Resource Maps of Colombia. Available online: https://solargis.com/maps-and-gis-data/download/colombia (accessed on 22 November 2022). | spa |
dcterms.bibliographicCitation | Rakhshani, E.; Rouzbehi, K.; J. Sánchez, A.; Tobar, A.C.; Pouresmaeil, E. Integration of large scale PV-based generation into power systems: A survey. Energies 2019, 12, 1425. | spa |
dcterms.bibliographicCitation | Díaz González, J.J. Viabilidad Regulatoria para Implementar Sistemas de Micro Redes Con Fuentes No Convencionales de Energía Renovable–FNCER–por Intercolombia SAESP. 2018. Available online: http://bibliotecavirtualoducal.uc.cl/vufind/Record/oai: localhost:10185-28863 (accessed on 24 January 2023). | spa |
dcterms.bibliographicCitation | Moreno, C.; Milanes, C.B.; Arguello, W.; Fontalvo, A.; Alvarez, R.N. Challenges and perspectives of the use of photovoltaic solar energy in Colombia. Int. J. Electr. Comput. Eng. 2022, 12, 4521–4528. | spa |
dcterms.bibliographicCitation | De Brito, M.A.G.; Galotto, L.; Sampaio, L.P.; e Melo, G.d.A.; Canesin, C.A. Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Trans. Ind. Electron. 2012, 60, 1156–1167 | spa |
dcterms.bibliographicCitation | Mishra, V.L.; Chauhan, Y.K.; Verma, K. A critical review on advanced reconfigured models and metaheuristics-based MPPT to address complex shadings of solar array. Energy Convers. Manag. 2022, 269, 116099. | spa |
dcterms.bibliographicCitation | Grisales-Noreña, L.F.; Montoya, O.D.; Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. J. Energy Storage 2020, 29, 101488. | spa |
dcterms.bibliographicCitation | Li, C.; De Bosio, F.; Chen, F.; Chaudhary, S.K.; Vasquez, J.C.; Guerrero, J.M. Economic dispatch for operating cost minimization under real-time pricing in droop-controlled DC microgrid. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 5, 587–595. | spa |
dcterms.bibliographicCitation | Younes, Z.; Alhamrouni, I.; Mekhilef, S.; Reyasudin, M. A memory-based gravitational search algorithm for solving economic dispatch problem in micro-grid. Ain Shams Eng. J. 2021, 12, 1985–1994. | spa |
dcterms.bibliographicCitation | Tan, Q.; Ding, Y.; Ye, Q.; Mei, S.; Zhang, Y.; Wei, Y. Optimization and evaluation of a dispatch model for an integrated wind-photovoltaic-thermal power system based on dynamic carbon emissions trading. Appl. Energy 2019, 253, 113598. | spa |
dcterms.bibliographicCitation | Gao, S.; Jia, H.; Marnay, C. Techno-economic evaluation of mixed AC and DC power distribution network for integrating large-scale photovoltaic power generation. IEEE Access 2019, 7, 105019–105029. | spa |
dcterms.bibliographicCitation | Lin, J.C.W.; Liu, Q.; Fournier-Viger, P.; Hong, T.P.; Voznak, M.; Zhan, J. A sanitization approach for hiding sensitive itemsets based on particle swarm optimization. Eng. Appl. Artif. Intell. 2016, 53, 1–18. | spa |
dcterms.bibliographicCitation | Lin, J.C.W.; Yang, L.; Fournier-Viger, P.; Wu, J.M.T.; Hong, T.P.; Wang, L.S.L.; Zhan, J. Mining high-utility itemsets based on particle swarm optimization. Eng. Appl. Artif. Intell. 2016, 55, 320–330 | spa |
dcterms.bibliographicCitation | Spea, S.R. Combined economic emission dispatch solution of an isolated renewable integrated micro-grid using crow search algorithm. In Proceedings of the 2019 21st International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 17–19 December 2019; pp. 47–52. | spa |
dcterms.bibliographicCitation | Rosales-Muñoz, A.A.; Grisales-Noreña, L.F.; Montano, J.; Montoya, O.D.; Perea-Moreno, A.J. Application of the multiverse optimization method to solve the optimal power flow problem in direct current electrical networks. Sustainability 2021, 13, 8703. | spa |
dcterms.bibliographicCitation | Velasquez, O.S.; Montoya Giraldo, O.D.; Garrido Arevalo, V.M.; Grisales Norena, L.F. Optimal power flow in direct-current power grids via black hole optimization. Adv. Electr. Electron. Eng. 2019, 17, 24–32. | spa |
dcterms.bibliographicCitation | Rosales Muñoz, A.A.; Grisales-Noreña, L.F.; Montano, J.; Montoya, O.D.; Giral-Ramírez, D.A. Optimal Power Dispatch of Distributed Generators in Direct Current Networks Using a Master–Slave Methodology That Combines the Salp Swarm Algorithm and the Successive Approximation Method. Electronics 2021, 10, 2837. | spa |
dcterms.bibliographicCitation | Garzon-Rivera, O.; Ocampo, J.; Grisales-Noreña, L.; Montoya, O.; Rojas-Montano, J. Optimal power flow in Direct Current Networks using the antlion optimizer. Stat. Optim. Inf. Comput. 2020, 8, 846–857. | spa |
dcterms.bibliographicCitation | Grisales-Noreña, L.F.; Ocampo-Toro, J.A.; Rosales-Muñoz, A.A.; Cortes-Caicedo, B.; Montoya, O.D. An Energy Management System for PV Sources in Standalone and Connected DC Networks Considering Economic, Technical, and Environmental Indices. Sustainability 2022, 14, 16429. | spa |
dcterms.bibliographicCitation | Grisales-Noreña, L.F.; Ramos-Paja, C.A.; Gonzalez-Montoya, D.; Alcalá, G.; Hernandez-Escobedo, Q. Energy management in PV based microgrids designed for the Universidad Nacional de Colombia. Sustainability 2020, 12, 1219. | spa |
dcterms.bibliographicCitation | Gbadamosi, S.L.; Nwulu, N.I. Optimal power dispatch and reliability analysis of hybrid CHP-PV-wind systems in farming applications. Sustainability 2020, 12, 8199. [ | spa |
dcterms.bibliographicCitation | Luna, A.C.; Diaz, N.L.; Andrade, F.; Graells, M.; Guerrero, J.M.; Vasquez, J.C. Economic power dispatch of distributed generators in a grid-connected microgrid. In Proceedings of the 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, Korea, 1–5 June 2015; pp. 1161–1168. | spa |
dcterms.bibliographicCitation | Gil-González, W.; Montoya, O.D.; Holguín, E.; Garces, A.; Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J. Energy Storage 2019, 21, 1–8. | spa |
dcterms.bibliographicCitation | Grisales-Noreña, L.F.; Rosales-Muñoz, A.A.; Cortés-Caicedo, B.; Montoya, O.D.; Andrade, F. Optimal Operation of PV Sources in DC Grids for Improving Technical, Economical, and Environmental Conditions by Using Vortex Search Algorithm and a Matrix Hourly Power Flow. Mathematics 2023, 11, 93. | spa |
dcterms.bibliographicCitation | Lin, C.W.; Hong, T.P.; Yang, K.T.; Wang, S.L. The GA-based algorithms for optimizing hiding sensitive itemsets through transaction deletion. Appl. Intell. 2015, 42, 210–230. | spa |
dcterms.bibliographicCitation | Lin, J.C.W.; Zhang, Y.; Zhang, B.; Fournier-Viger, P.; Djenouri, Y. Hiding sensitive itemsets with multiple objective optimization. Soft Comput. 2019, 23, 12779–12797. | spa |
dcterms.bibliographicCitation | NASA. NASA Prediction of Worldwide Energy Resources, Washington, DC, United States. Available online: https://power.larc. nasa.gov/ (accessed on 21 September 2022). | spa |
dcterms.bibliographicCitation | XM SA ESP. Sinergox Database, Colombia. Available online: https://sinergox.xm.com.co/Paginas/Home.aspx (accessed on 21 September 2022). | spa |
dcterms.bibliographicCitation | Instituto de Planificación y Promoción de Soluciones Energéticas para Zonas No Interconectadas. Informes Mensuales de Te limetría, Colombia. Available online: https://ipse.gov.co | spa |
dcterms.bibliographicCitation | Zolghadr-Asli, B.; Bozorg-Haddad, O.; Chu, X. Crow search algorithm (CSA). In Advanced Optimization by Nature-Inspired Algorithms; Springer: Berlin/Heidelberg, Germany, 2018; pp. 143–149. | spa |
dcterms.bibliographicCitation | Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. | spa |
dcterms.bibliographicCitation | Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513. | spa |
dcterms.bibliographicCitation | Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. | spa |
dcterms.bibliographicCitation | Do ˘gan, B.; Ölmez, T. A new metaheuristic for numerical function optimization: Vortex Search algorithm. Inf. Sci. 2015, 293, 125–145. | spa |
dcterms.bibliographicCitation | Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. | spa |
dcterms.bibliographicCitation | Mirjalili, S.; Jangir, P.; Saremi, S. Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving engineering problems. Appl. Intell. 2017, 46, 79–95. | spa |
dcterms.bibliographicCitation | Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: 2010 | spa |
dcterms.bibliographicCitation | Falaghi, H.; Ramezani, M.; Haghifam, M.R.; Milani, K.R. Optimal selection of conductors in radial distribution systems with time varying load. In Proceedings of the CIRED 2005-18th International Conference and Exhibition on Electricity Distribution, Turin, Italy, 6–9 June 2005; pp. 1–4. | spa |
dcterms.bibliographicCitation | Grisales-Noreña, L.; Montoya-Giraldo, O.; Gil-González, W. Optimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology: Genetic and Vortex Search Algorithms. Arab. J. Sci. Eng. 2022, 47, 14657–14672. | spa |
dcterms.bibliographicCitation | Abou El Ela, A.; El-Sehiemy, R.A.; Shaheen, A.; Shalaby, A. Application of the crow search algorithm for economic environmental dispatch. In Proceedings of the 2017 nineteenth international Middle East power systems conference (MEPCON), Cairo, Egypt, 19–21 December 2017; pp. 78–83. | spa |
dcterms.bibliographicCitation | Verma, S.; Shiva, C.K. A novel salp swarm algorithm for expansion planning with security constraints. Iran. J. Sci. Technol. Trans. Electr. Eng. 2020, 44, 1335–1344. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | https:// doi.org/10.3390/10.3390/ en16031350 | |
dc.subject.keywords | Direct current grids | spa |
dc.subject.keywords | Grid-connected network | spa |
dc.subject.keywords | Standalone network | spa |
dc.subject.keywords | Optimization | spa |
dc.subject.keywords | Distributed generation | spa |
dc.subject.keywords | Photovoltaic generation | spa |
dc.subject.keywords | Operating costs | spa |
dc.subject.keywords | Energy losses | spa |
dc.subject.keywords | CO2 emissions | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Público general | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.