Mostrar el registro sencillo del ítem

dc.contributor.authorGrisales-Noreña, Luis Fernando
dc.contributor.authorRosales-Muñoz, Andrés Alfonso
dc.contributor.authorCortés-Caicedo, Brandon
dc.contributor.authorMontoya, Oscar
dc.contributor.authorAndrade, Fabio
dc.date.accessioned2023-05-24T21:12:57Z
dc.date.available2023-05-24T21:12:57Z
dc.date.issued2022-12-26
dc.date.submitted2023-05-24
dc.identifier.citationGrisales-Noreña, L.F.; Rosales-Muñoz, A.A.; Cortés-Caicedo, B.; Montoya, O.D.; Andrade, F. Optimal Operation of PV Sources in DC Grids for Improving Technical, Economical, and Environmental Conditions by Using Vortex Search Algorithm and a Matrix Hourly Power Flow. Mathematics 2023, 11, 93. https://doi.org/10.3390/math11010093spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/11854
dc.description.abstractThis document presents a master–slave methodology for solving the problem of optimal operation of photovoltaic (PV) distributed generators (DGs) in direct current (DC) networks. This problem was modeled using a nonlinear programming model (NLP) that considers the minimizationof three different objective functions in a daily operation of the system. The first one corresponds to the minimization of the total operational cost of the system, including the energy purchasing cost to the conventional generators and maintenance costs of the PV sources; the second objective function corresponds to the reduction of the energy losses associated with the transport of energy in the network, and the third objective function is related to the minimization of the total emissions of CO2 by the conventional generators installed on the DC grid. The minimization of these objective functions is achieved by using a master–slave optimization approach through the application of the Vortex Search algorithm combined with a matrix hourly power flow. To evaluate the effectiveness and robustness of the proposed approach, two test scenarios were used, which correspond to a grid connected and a standalone network located in two different regions of Colombia. The grid-connected system emulates the behavior of the solar resource and power demand of the city of Medellín Antioquia, and the standalone network corresponds to an adaptation of the generation and demand curves for the municipality of Capurganá-Choco. A numerical comparison was performed with four optimization methodologies reported in the literature: particle swarm optimization, multiverse optimizer, crow search algorithm, and salp swarm algorithm. The results obtained demonstrate that the proposed optimization approach achieved excellent solutions in terms of response quality, repeatability, and processing times.spa
dc.format.extent28 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceMathematics Vol. 11 No. 1 (2023)spa
dc.titleOptimal Operation of PV Sources in DC Grids for Improving Technical, Economical, and Environmental Conditions by Using Vortex Search Algorithm and a Matrix Hourly Power Flowspa
dcterms.bibliographicCitationSaeed, M.H.; Fangzong, W.; Kalwar, B.A.; Iqbal, S. A Review on Microgrids’ Challenges & Perspectives. IEEE Access 2021, 9, 166502–166517.spa
dcterms.bibliographicCitationLöfquist, L. Is there a universal human right to electricity? Int. J. Hum. Rights 2020, 24, 711–723.spa
dcterms.bibliographicCitationSarkodie, S.A.; Adams, S. Electricity access, human development index, governance and income inequality in Sub-Saharan Africa. Energy Rep. 2020, 6, 455–466.spa
dcterms.bibliographicCitationSaint Akadiri, S.; Alola, A.A.; Olasehinde-Williams, G.; Etokakpan, M.U. The role of electricity consumption, globalization and economic growth in carbon dioxide emissions and its implications for environmental sustainability targets. Sci. Total. Environ. 2020, 708, 134653.spa
dcterms.bibliographicCitationLamb, W.F.; Wiedmann, T.; Pongratz, J.; Andrew, R.; Crippa, M.; Olivier, J.G.J.; Wiedenhofer, D.; Mattioli, G.; Khourdajie, A.A.; House, J.; et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett. 2021, 16, 073005.spa
dcterms.bibliographicCitationValencia, A.; Hincapie, R.A.; Gallego, R.A. Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium–low voltage distribution networks. J. Energy Storage 2021, 34, 102158spa
dcterms.bibliographicCitationAbdelgawad, H.; Sood, V.K. A comprehensive review on microgrid architectures for distributed generation. In Proceedings of the 2019 IEEE Electrical Power and Energy Conference (EPEC), IEEE, Montreal, QC, Canada, 6–18 October 2019; pp. 1–8.spa
dcterms.bibliographicCitationLi, J.; Liu, F.; Wang, Z.; Low, S.H.; Mei, S. Optimal power flow in stand-alone DC microgrids. IEEE Trans. Power Syst. 2018, 33, 5496–5506.spa
dcterms.bibliographicCitationGarcés, A. On the convergence of Newton’s method in power flow studies for DC microgrids. IEEE Trans. Power Syst. 2018, 33, 5770–5777.spa
dcterms.bibliographicCitationTawalbeh, M.; Al-Othman, A.; Kafiah, F.; Abdelsalam, E.; Almomani, F.; Alkasrawi, M. Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Sci. Total. Environ. 2021, 759, 143528.spa
dcterms.bibliographicCitationMoreno, C.; Milanes, C.B.; Arguello, W.; Fontalvo, A.; Alvarez, R.N. Challenges and perspectives of the use of photovoltaic solar energy in Colombia. Int. J. Electr. Comput. Eng. 2022, 12, 4521–4528.spa
dcterms.bibliographicCitationLópez, A.R.; Krumm, A.; Schattenhofer, L.; Burandt, T.; Montoya, F.C.; Oberländer, N.; Oei, P.Y. Solar PV generation in Colombia A qualitative and quantitative approach to analyze the potential of solar energy market. Renew. Energy 2020, 148, 12spa
dcterms.bibliographicCitationInsuasty-Reina, J.G. A system dynamics model for the analysis of CO2 emissions derived from the inclusion of hydrogen obtained from coal in the energy matrix in Colombia. Int. J. Energy Econ. Policy 2022, 12, 72–82.spa
dcterms.bibliographicCitationLi, C.; De Bosio, F.; Chen, F.; Chaudhary, S.K.; Vasquez, J.C.; Guerrero, J.M. Economic dispatch for operating cost minimization under real-time pricing in droop-controlled DC microgrid. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 5, 587–595. [spa
dcterms.bibliographicCitationGao, S.; Jia, H.; Marnay, C. Techno-economic evaluation of mixed AC and DC power distribution network for integrating large-scale photovoltaic power generation. IEEE Access 2019, 7, 105019–105029.spa
dcterms.bibliographicCitationTan, Q.; Ding, Y.; Ye, Q.; Mei, S.; Zhang, Y.; Wei, Y. Optimization and evaluation of a dispatch model for an integrated wind-photovoltaic-thermal power system based on dynamic carbon emissions trading. Appl. Energy 2019, 253, 113598.spa
dcterms.bibliographicCitationYounes, Z.; Alhamrouni, I.; Mekhilef, S.; Reyasudin, M. A memory-based gravitational search algorithm for solving economic dispatch problem in micro-grid. Ain Shams Eng. J. 2021, 12, 1985–1994.spa
dcterms.bibliographicCitationVelasquez, O.S.; Montoya Giraldo, O.D.; Garrido Arevalo, V.M.; Grisales Norena, L.F. Optimal power flow in direct-current power grids via black hole optimization. Adv. Electr. Electron. Eng. 2019, 17, 24–32.spa
dcterms.bibliographicCitationGarzon-Rivera, O.; Ocampo, J.; Grisales-Noreña, L.; Montoya, O.; Rojas-Montano, J. Optimal power flow in Direct Current Networks using the antlion optimizer. Stat. Optim. Inf. Comput. 2020, 8, 846–857.spa
dcterms.bibliographicCitationRadosavljevi´c, J.; Arsi´c, N.; Milovanovi´c, M.; Ktena, A. Optimal placement and sizing of renewable distributed generation using hybrid metaheuristic algorithm. J. Mod. Power Syst. Clean Energy 2020, 8, 499–510.spa
dcterms.bibliographicCitationMontoya, O.D.; Grisales-Noreña, L.F.; Gil-González, W.; Alcalá, G.; Hernandez-Escobedo, Q. Optimal location and sizing of PV sources in DC networks for minimizing greenhouse emissions in diesel generators. Symmetry 2020, 12, 322.spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Montoya, O.D.; Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. J. Energy Storage 2020, 29, 101488. [spa
dcterms.bibliographicCitationRosales-Muñoz, A.A.; Grisales-Noreña, L.F.; Montano, J.; Montoya, O.D.; Perea-Moreno, A.J. Application of the multiverse optimization method to solve the optimal power flow problem in direct current electrical networks. Sustainability 2021, 13, 8703.spa
dcterms.bibliographicCitationSahoo, R.R.; Ray, M. PSO based test case generation for critical path using improved combined fitness function. J. King Saud-Univ.-Comput. Inf. Sci. 2020, 32, 479–490.spa
dcterms.bibliographicCitationZhang, X.; Beram, S.M.; Haq, M.A.; Wawale, S.G.; Buttar, A.M. Research on algorithms for control design of human–machine interface system using ML. Int. J. Syst. Assur. Eng. Manag. 2021, 13, 462–469.spa
dcterms.bibliographicCitationJin, Y.; Olhofer, M.; Sendhoff, B. A framework for evolutionary optimization with approximate fitness functions. IEEE Trans. Evol. Comput. 2002, 6, 481–494.spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Montoya, O.D.; Hernández, J.C.; Ramos-Paja, C.A.; Perea-Moreno, A.J. A Discrete-Continuous PSO for the Optimal Integration of D-STATCOMs into Electrical Distribution Systems by Considering Annual Power Loss and Investment Costs. Mathematics 2022, 10, 2453spa
dcterms.bibliographicCitationÖzkı¸s, A.; Babalık, A. A novel metaheuristic for multi-objective optimization problems: The multi-objective vortex search algorithm. Inf. Sci. 2017, 402, 124–148.spa
dcterms.bibliographicCitationFathy, A.; Abd Elaziz, M.; Alharbi, A.G. A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell. Renew. Energy 2020, 146, 1833–1845.spa
dcterms.bibliographicCitationAltintasi, C.; Aydin, O.; Taplamacioglu, M.C.; Salor, O. Power system harmonic and interharmonic estimation using Vortex Search Algorithm. Electr. Power Syst. Res. 2020, 182, 106187.spa
dcterms.bibliographicCitationGrisales-Noreña, L.; Montoya-Giraldo, O.; Gil-González, W. Optimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology: Genetic and Vortex Search Algorithms. Arab. J. Sci. Eng. 2022, 47, 14657–14672.spa
dcterms.bibliographicCitationMontoya, O.D.; Garrido, V.M.; Gil-González, W.; Grisales-Noreña, L.F. Power flow analysis in DC grids: Two alternative numerical methods. IEEE Trans. Circuits Syst. Ii: Express Briefs 2019, 66, 1865–1869.spa
dcterms.bibliographicCitationBaran, M.E.; Wu, F.F. Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Power Eng. Rev. 1989, 9, 101–102.spa
dcterms.bibliographicCitationv. Falaghi, H.; Ramezani, M.; Haghifam, M.R.; Milani, K.R. Optimal selection of conductors in radial distribution systems with time varying load. In Proceedings of the CIRED 2005-18th International Conference and Exhibition on Electricity Distribution, IET, Turin, Italy, 6–9 June 2005; pp. 1–4.spa
dcterms.bibliographicCitationHassan, Q.; Jaszczur, M.; Przenzak, E.; Abdulateef, J. The PV cell temperature effect on the energy production and module efficiency. Contemp. Probl. Power Eng. Environ. Prot. 2016, 33, 1.spa
dcterms.bibliographicCitationSchwingshackl, C.; Petitta, M.; Wagner, J.; Belluardo, G.; Moser, D.; Castelli, M.; Zebisch, M.; Tetzlaff, A. Wind Effect on PV Module Temperature: Analysis of Different Techniques for an Accurate Estimation. Energy Procedia 2013, 40, 77–86.spa
dcterms.bibliographicCitationNASA. NASA Prediction Of Worldwide Energy Resources, Washington D. C., United States. Available online: https://power. larc.nasa.gov/ (accessed on 21 September 2022).spa
dcterms.bibliographicCitationXM SA ESP. Sinergox Database, Colombia. Available online: https://sinergox.xm.com.co/Paginas/Home.aspx (accessed on 21 September 2022).spa
dcterms.bibliographicCitationInstituto de Planificación y Promoción de Soluciones Energéticas para Zonas No Interconectadas. Informes Mensuales de Te limetría, Colombia. Available online: https://ipse.gov.co/cnm/informe-mensuales-telemetria/ (accessed on 2spa
dcterms.bibliographicCitationSistema Único de Información de Servicios Públicos Domicialiarios. Consolidado de Energía por Empresa y Departamento, Colombia. Available online: https://sui.superservicios.gov.co/Reportes-del-sector/Energia/Reportes-comerciales/Consolidado de-energia-por-empresa-y-departamento (accessed on 21 September 2022)spa
dcterms.bibliographicCitationSistema Único de Información de Servicios Públicos Domicialiarios. Consolidado de Información téCnica Operativa ZNI, Colombia. Available online: https://sui.superservicios.gov.co/Reportes-del-sector/Energia/Reportes-comerciales/Consolidado de-informacion-tecnica-operativa-ZNI (accessed on 21 September 2022).spa
dcterms.bibliographicCitationXM SA EPS. En Colombia Factor de emisión de CO2 por generación eléctrica del Sistema Interconectado: 164.38 gramos de CO2 por kilovatio hora, Colombia. Available online: https://www.xm.com.co/noticias/en-colombia-factor-de-emision-de-co2-por generacion-electrica-del-sistema-interconectado (accessed on 21 September 2022)spa
dcterms.bibliographicCitationAcademia Colombiana de Ciencias Exactas, F. Factores de Emisión de los Combustibles Colombianos, Colombia, 2016. Available online: https://bdigital.upme.gov.co/bitstream/handle/001/1285/17%20Factores%20de%20emision%20de%20combustibles. pdf;jsessionid=5016BD31B13035A5FBF551BC26B1293E?sequence=18 (accessed on 21 September 2022).spa
dcterms.bibliographicCitationAbou El Ela, A.; El-Sehiemy, R.A.; Shaheen, A.; Shalaby, A. Application of the crow search algorithm for economic environmental dispatch. In Proceedings of the 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), IEEE, Cairo, Egypt, 19–21 December 2017; pp. 78–83.spa
dcterms.bibliographicCitationVerma, S.; Shiva, C.K. A novel salp swarm algorithm for expansion planning with security constraints. Iran. J. Sci. Technol. Trans. Electr. Eng. 2020, 44, 1335–1344.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doihttps://doi.org/10.3390/math11010093
dc.subject.keywordsDirect current networksspa
dc.subject.keywordsGrid-connected networkspa
dc.subject.keywordsStandalone networkspa
dc.subject.keywordsMetaheuristic optimization methodsspa
dc.subject.keywordsMaster–slave methodologyspa
dc.subject.keywordsPhotovoltaic generationspa
dc.subject.keywordsMinimization of operating costsspa
dc.subject.keywordsMinimization of energy lossesspa
dc.subject.keywordsMinimization of CO2 emissionsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.