Mostrar el registro sencillo del ítem

dc.contributor.authorGil-González, Walter
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorRiffo, Sebastián
dc.contributor.authorRestrepo, Carlos
dc.contributor.authorMuñoz, Javier
dc.date.accessioned2023-05-05T19:24:28Z
dc.date.available2023-05-05T19:24:28Z
dc.date.issued2023-01-19
dc.date.submitted2023-05-05
dc.identifier.citationGil-González,W.; Montoya, O.D.; Riffo, S.; Restrepo, C.; Muñoz, J. A Global Tracking Sensorless Adaptive PI-PBC Design for Output Voltage Regulation in a Boost Converter Feeding a DC Microgrid . Energies 2023, 16, 1106.6. https://doi.org/10.3390/en16031106spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/11839
dc.description.abstractThe problem of the output voltage regulation in a DC-DC boost converter feeding a DC microgrid is addressed in this research via the passivity-based control theory with a proportional–integral action (PI-PBC). Two external input estimators were implemented in conjunction with the proposed controller to make it sensorless and adaptive. The first estimator corresponds to the immersion & invariance (I&I) approach applied to calculate the expected value of the DC load, which is modeled as an unknown DC current. The second estimator is based on the disturbance–observer (DO) approach, which reaches the value of the voltage input. The main advantage of both estimators is that these ensure exponential convergence under steady-state operating conditions, and their parametrization only requires the definition of an integral gain. A comparative analysis with simulations demonstrates that the proposed PI-PBC approach is effective in regulating/controlling the voltage profile in unknown DC loads as compared to the adaptive sliding mode controller. Experimental validations have demonstrated that the proposed PI-PBC approach, in conjunction with the I&I and the DO estimators, allowed regulation of the voltage output profile in the terminals of the DC load with asymptotic stability properties and fast convergence times (1.87 ms) and acceptably overshoots (6.1%) when the voltage input varies its magnitude (from 10 to 12 V and from 10 to 8 V) considering that the DC load changed with a square waveform between 1 and 2 A with 100 Hz.spa
dc.format.extent18 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceEnergies Vol. 16 No. 3 (2023)spa
dc.titleA Global Tracking Sensorless Adaptive PI-PBC Design for Output Voltage Regulation in a Boost Converter Feeding a DC Microgridspa
dcterms.bibliographicCitationLakshmi, S.; Ganguly, S. Transition of Power Distribution System Planning from Passive to Active Networks: A State-of-the-Art Review and a New Proposal. In Sustainable Energy Technology and Policies; Springer: Singapore, 2017; pp. 87–117.spa
dcterms.bibliographicCitationTang, Z.; Liu, T.; Zhang, C.; Zheng, Y.; Hill, D.J. Distributed Control of Active Distribution Networks for Frequency Support. In Proceedings of the 2018 Power Systems Computation Conference (PSCC), Dublin, Ireland, 11–15 June 2018. [spa
dcterms.bibliographicCitationSekar, R.; Suresh, D.S.; Naganagouda, H. A review on power electronic converters suitable for renewable energy sources. In Proceedings of the 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Mysuru, India, 15–16 December 2017.spa
dcterms.bibliographicCitationAfonso, J.L.; Tanta, M.; Pinto, J.G.O.; Monteiro, L.F.C.; Machado, L.; Sousa, T.J.C.; Monteiro, V. A Review on Power Electronics Technologies for Power Quality Improvement. Energies 2021, 14, 8585spa
dcterms.bibliographicCitationSahin, M.E.; Blaabjerg, F. A Hybrid PV-Battery/Supercapacitor System and a Basic Active Power Control Proposal in MATLAB/ Simulink. Electronics 2020, 9, 129.spa
dcterms.bibliographicCitationLee, G.J. Superconductivity Application in Power System. In Applications of High-Tc Superconductivity; InTech: London, UK, 2011spa
dcterms.bibliographicCitationGiraldo, E.; Garces, A. An Adaptive Control Strategy for aWind Energy Conversion System Based on PWM-CSC and PMSG. IEEE Trans. Power Syst. 2014, 29, 1446–1453.spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Ramos-Paja, C.A.; Gonzalez-Montoya, D.; Alcalá, G.; Hernandez-Escobedo, Q. Energy Management in PV Based Microgrids Designed for the Universidad Nacional de Colombia. Sustainability 2020, 12, 1219spa
dcterms.bibliographicCitationMagaldi, G.L.; Serra, F.M.; de Angelo, C.H.; Montoya, O.D.; Giral-Ramírez, D.A. Voltage Regulation of an Isolated DC Microgrid with a Constant Power Load: A Passivity-based Control Design. Electronics 2021, 10, 2085spa
dcterms.bibliographicCitationGavriluta, C.; Candela, I.; Citro, C.; Luna, A.; Rodriguez, P. Design considerations for primary control in multi-terminal VSC-HVDC grids. Electr. Power Syst. Res. 2015, 122, 33–41.spa
dcterms.bibliographicCitationRakhshani, E.; Remon, D.; Cantarellas, A.; Garcia, J.M.; Rodriguez, P. Modeling and sensitivity analyses of VSP based virtual inertia controller in HVDC links of interconnected power systems. Electr. Power Syst. Res. 2016, 141, 246–263.spa
dcterms.bibliographicCitationBacha, S.; Munteanu, I.; Bratcu, A.I. Power Electronic Converters Modeling and Control; Springer: London, UK, 2014spa
dcterms.bibliographicCitationMartinez-Treviño, B.A.; El Aroudi, A.; Vidal-Idiarte, E.; Cid-Pastor, A.; Martinez-Salamero, L. Sliding-mode control of a boost converter under constant power loading conditions. IET Power Electron. 2019, 12, 521–529.spa
dcterms.bibliographicCitationHamidi, S.A.; Nasiri, A. Stability analysis of a DC-DC converter for battery energy storage system feeding CPL. In Proceedings of the 2015 IEEE International Telecommunications Energy Conference (INTELEC), Osaka, Japan, 18–22 October 2015; pp. 1–5.spa
dcterms.bibliographicCitationSingh, S.; Fulwani, D.; Kumar, V. Robust sliding-mode control of dc/dc boost converter feeding a constant power load. IET Power Electron. 2015, 8, 1230–1237.spa
dcterms.bibliographicCitationWu, J.; Lu, Y. Adaptive backstepping sliding mode control for boost converter with constant power load. IEEE Access 2019, 7, 50797–50807.spa
dcterms.bibliographicCitationHe, W.; Li, S.; Yang, J.; Wang, Z. Incremental passivity based control for DC-DC boost converter with circuit parameter perturbations using nonlinear disturbance observer. In Proceedings of the IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 1353–1358.spa
dcterms.bibliographicCitationHe,W.; Li, S.; Yang, J.;Wang, Z. Incremental passivity-based control for DC-DC boost converters under time-varying disturbances via a generalized proportional integral observer. J. Power Electron. 2018, 18, 147–159.spa
dcterms.bibliographicCitationFarsizadeh, H.; Gheisarnejad, M.; Mosayebi, M.; Rafiei, M.; Khooban, M.H. An intelligent and fast controller for DC/DC converter feeding CPL in a DC microgrid. IEEE Trans. Circuits Syst. II Express Briefs 2019, 67, 1104–1108.spa
dcterms.bibliographicCitationHe,W.; Shang, Y. Finite-Time Parameter Observer-Based Sliding Mode Control for a DC/DC Boost Converter with Constant Power Loads. Electronics 2022, 11, 819.spa
dcterms.bibliographicCitationSerra, F.M.; Magaldi, G.L.; Fernandez, L.M.; Larregay, G.O.; CH, D.A. IDA-PBC controller of a DC-DC boost converter for continuous and discontinuous conduction mode. IEEE Lat. Am. Trans. 2018, 16, 52–58.spa
dcterms.bibliographicCitationZhang, X.; He, W.; Zhang, Y. An Adaptive Output Feedback Controller for Boost Converter. Electronics 2022, 11, 905spa
dcterms.bibliographicCitationZhang, X.; Martinez-Lopez, M.; He,W.; Shang, Y.; Jiang, C.; Moreno-Valenzuela, J. Sensorless Control for DC–DC Boost Converter via Generalized Parameter Estimation-Based Observer. Appl. Sci. 2021, 11, 7761spa
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Espinosa-Perez, G. Adaptive control for second-order DC–DC converters: PBC approach. In Modeling, Operation, and Analysis of DC Grids; Elsevier: Amsterdam, The Netherlands, 2021; pp. 289–310.spa
dcterms.bibliographicCitationZhang, M.; Borja, P.; Ortega, R.; Liu, Z.; Su, H. PID Passivity-Based Control of Port-Hamiltonian Systems. IEEE Trans. Autom. Control. 2018, 63, 1032–1044spa
dcterms.bibliographicCitationOrtega, R.; García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. Eur. J. Control. 2004, 10, 432–450.spa
dcterms.bibliographicCitationOrtega, R.; van der Schaft, A.; Castanos, F.; Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Trans. Autom. Control. 2008, 53, 2527–2542spa
dcterms.bibliographicCitationHe, W.; Soriano-Rangel, C.A.; Ortega, R.; Astolfi, A.; Mancilla-David, F.; Li, S. Energy shaping control for buck–boost converters with unknown constant power load. Control. Eng. Pract. 2018, 74, 33–43.spa
dcterms.bibliographicCitationSerra, F.M.; Angelo, C.H.D.; Forchetti, D.G. IDA-PBC control of a DC–AC converter for sinusoidal three-phase voltage generation. Int. J. Electron. 2016, 104, 93–110.spa
dcterms.bibliographicCitationSerra, F.M.; Angelo, C.H.D.; Forchetti, D.G. Interconnection and damping assignment control of a three-phase front end converter. Int. J. Electr. Power Energy Syst. 2014, 60, 317–324.spa
dcterms.bibliographicCitationMontoya, O.D.; Serra, F.M.; Gil-González,W.; Asensio, E.M.; Bosso, J.E. An IDA-PBC Design with Integral Action for Output Voltage Regulation in an Interleaved Boost Converter for DC Microgrid Applications. Actuators 2021, 11, 5.spa
dcterms.bibliographicCitationCisneros, R.; Pirro, M.; Bergna, G.; Ortega, R.; Ippoliti, G.; Molinas, M. Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters. Control. Eng. Pract. 2015, 43, 109–119.spa
dcterms.bibliographicCitationCisneros, R.; Ortega, R.; Pirro, M.; Ippoliti, G.; Bergna, G.; Cabrera, M.M. Global tracking passivity-based PI control for power converters: An application to the boost and modular multilevel converters. In Proceedings of the 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, Turkey, 1–4 June 2014spa
dcterms.bibliographicCitationMalekzadeh, M.; Khosravi, A.; Tavan, M. An immersion and invariance based input voltage and resistive load observer for DC–DC boost converter. SN Appl. Sci. 2019, 2, 1–13.spa
dcterms.bibliographicCitationZhang, Z.; Song, G.; Zhou, J.; Zhang, X.; Yang, B.; Liu, C.; Guerrero, J.M. An adaptive backstepping control to ensure the stability and robustness for boost power converter in DC microgrids. Energy Rep. 2022, 8, 1110–1124spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi6. https:// doi.org/10.3390/en16031106
dc.subject.keywordsPassivity-based control with PI actionspa
dc.subject.keywordsAdaptive and sensorless control designspa
dc.subject.keywordsAsymptotic stability convergencespa
dc.subject.keywordsUnknown DC loadspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.