Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía-Pineda, Laura Patricia
dc.contributor.authorMontoya, Oscar Danilo
dc.date.accessioned2023-05-04T15:43:29Z
dc.date.available2023-05-04T15:43:29Z
dc.date.issued2023-01-03
dc.date.submitted2023-05-03
dc.identifier.citationGarcía-Pineda, L.P.; Montoya, O.D. Optimal Reactive Power Compensation via D-STATCOMs in Electrical Distribution Systems by Applying the Generalized Normal Distribution Optimizer. Algorithms 2023, 16, 29.https://doi.org/10.3390/a16010029spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/11838
dc.description.abstractThis research deals with the problem regarding the optimal siting and sizing of distribution static compensators (D-STATCOMs) via the application of a master–slave optimization technique. The master stage determines the nodes where the D-STATCOMs must be located and their nominal rates by applying the generalized normal distribution optimizer (GNDO) with a discrete–continuous codification. In the slave stage, the successive approximations power flow method is implemented in order to establish the technical feasibility of the solution provided by the master stage, i.e., voltage regulation and device capabilities, among other features. The main goal of the proposed master–slave optimizer is to minimize the expected annual operating costs of the distribution grid, which includes the energy loss and investment costs of the D-STATCOMs. With the purpose of improving the effectiveness of reactive power compensation during the daily operation of the distribution grid, an optimal reactive power flow (ORPF) approach is used that considers the nodes where D-STATCOMs are located as inputs in order to obtain their daily expected dynamical behavior with regard to reactive power injection to obtain additional net profits. The GNDO approach and the power flow method are implemented in the MATLAB programming environment, and the ORPF approach is implemented in the GAMS software using a test feeder comprising 33 nodes with both radial and meshed configurations. A complete comparative analysis with the Salp Swarm Algorithm is presented in order to demonstrate the effectiveness of the proposed two-stage optimization approach in the fixed operation scenario regarding the final objective function values. In addition, different tests considering the possibility of hourly power injection using D-STATCOMs through the ORPF solution demonstrate that additional gains can be obtained in the expected annual operative costs of the grid.spa
dc.format.extent18 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceAlgorithms Vol. 16 N° 1spa
dc.titleOptimal Reactive Power Compensation via D-STATCOMs in Electrical Distribution Systems by Applying the Generalized Normal Distribution Optimizerspa
dcterms.bibliographicCitationSiano, P.; Rigatos, G.; Piccolo, A. Active Distribution Networks and Smart Grids: Optimal Allocation of Wind Turbines by Using Hybrid GA and Multi-Period OPF. In Atlantis Computational Intelligence Systems; Atlantis Press: Amsterdam, The Netherlands, 2012; pp. 579–599. [CrossRef]spa
dcterms.bibliographicCitationKrishna, T.M.; Ramana, N.; Kamakshaiah, S. A novel algorithm for the loss estimation and minimization of radial distribution system with distributed generation. In Proceedings of the 2013 International Conference on Energy Efficient Technologies for Sustainability, Nagercoil, India, 10–12 April 2013; pp. 1289–1293.spa
dcterms.bibliographicCitationNasir, M.; Shahrin, N.; Bohari, Z.; Sulaima, M.; Hassan, M. A Distribution Network Reconfiguration based on PSO: Considering DGs sizing and allocation evaluation for voltage profile improvement. In Proceedings of the 2014 IEEE Student Conference on Research and Development, Penang, Malaysia, 16–17 December 2014; pp. 1–6.spa
dcterms.bibliographicCitationVita, V. Development of a Decision-Making Algorithm for the Optimum Size and Placement of Distributed Generation Units in Distribution Networks. Energies 2017, 10, 1433. [CrossRef]spa
dcterms.bibliographicCitationVerma, H.K.; Singh, P. Optimal reconfiguration of distribution network using modified culture algorithm. J. Inst. Eng. Ser. B 2018, 99, 613–622. [CrossRef]spa
dcterms.bibliographicCitationVita, V. Development of a Decision-Making Algorithm for the Optimum Size and Placement of Distributed Generation Units in Distribution Networks. Energies 2017, 10, 1433. [CrossRef]spa
dcterms.bibliographicCitationVerma, H.K.; Singh, P. Optimal reconfiguration of distribution network using modified culture algorithm. J. Inst. Eng. Ser. B 2018, 99, 613–622. [CrossRef]spa
dcterms.bibliographicCitationSultana, S.; Roy, P.K. Optimal capacitor placement in radial distribution systems using teaching learning based optimization. Int. J. Electr. Power Energy Syst. 2014, 54, 387–398. [CrossRef]spa
dcterms.bibliographicCitationKerrouche, K.D.E.; Lodhi, E.; Kerrouche, M.B.;Wang, L.; Zhu, F.; Xiong, G. Modeling and design of the improved D-STATCOM control for power distribution grid. SN Appl. Sci. 2020, 2, 1519. [CrossRef]spa
dcterms.bibliographicCitationSirjani, R.; Jordehi, A.R. Optimal placement and sizing of distribution static compensator (D-STATCOM) in electric distribution networks: A review. Renew. Sustain. Energy Rev. 2017, 77, 688–694. [CrossRef]spa
dcterms.bibliographicCitationRezaeian Marjani, S.; Talavat, V.; Galvani, S. Optimal allocation of D-STATCOM and reconfiguration in radial distribution network using MOPSO algorithm in TOPSIS framework. Int. Trans. Electr. Energy Syst. 2019, 29, e2723.spa
dcterms.bibliographicCitationTolabi, H.B.; Ali, M.H.; Rizwan, M. Simultaneous reconfiguration, optimal placement of DSTATCOM, and photovoltaic array in a distribution system based on fuzzy-ACO approach. IEEE Trans. Sustain. Energy 2014, 6, 210–218. [CrossRef]spa
dcterms.bibliographicCitationGupta, A.R.; Kumar, A. Energy savings using D-STATCOM placement in radial distribution system. Procedia Comput. Sci. 2015, 70, 558–564. [CrossRef]spa
dcterms.bibliographicCitationJazebi, S.; Hosseinian, S.H.; Vahidi, B. DSTATCOM allocation in distribution networks considering reconfiguration using differential evolution algorithm. Energy Convers. Manag. 2011, 52, 2777–2783. [CrossRef]spa
dcterms.bibliographicCitationDevi, S.; Geethanjali, M. Optimal location and sizing of distribution static synchronous series compensator using particle swarm optimization. Int. J. Electr. Power Energy Syst. 2014, 62, 646–653. [CrossRef]spa
dcterms.bibliographicCitationGupta, A.R.; Kumar, A. Optimal placement of D-STATCOM in distribution network using new sensitivity index with probabilistic load models. In Proceedings of the 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS), Chandigarh, India, 21–22 December 2015; pp. 1–6.spa
dcterms.bibliographicCitationSharma, A.K.; Saxena, A.; Tiwari, R. Optimal Placement of SVC Incorporating Installation Cost. Int. J. Hybrid Inf. Technol. 2016, 9, 289–302. [CrossRef]spa
dcterms.bibliographicCitationBayer, Christophe Pierre, Fionna Klasen, and Hubertus Adam. 2007. “Association of Trauma and PTSD Symptoms with Openness to Reconciliation and Feelings of Revenge Among Former Ugandan and Congolese Child Soldiers.” Journal of the American Medical Association 298 (5): 555-559. https://doi.org/10.1001/jama.298.5.555 8.spa
dcterms.bibliographicCitationTuzikova, V.; Tlusty, J.; Muller, Z. A novel power losses reduction method based on a particle swarm optimization algorithm using STATCOM. Energies 2018, 11, 2851spa
dcterms.bibliographicCitationMora-Burbano, J.A.; Fonseca-Díaz, C.D.; Montoya, O.D. Application of the SSA for Optimal Reactive Power Compensation in Radial and Meshed Distribution Using D-STATCOMs. Algorithms 2022, 15, 345.spa
dcterms.bibliographicCitationGarrido, V.M.; Montoya, O.D.; Medina-Quesada, Á.; Hernández, J.C. Optimal Reactive Power Compensation in Distribution Networks with Radial and Meshed Structures Using D-STATCOMs: A Mixed-Integer Convex Approach. Sensors 2022, 22, 8676. [CrossRef]spa
dcterms.bibliographicCitationZhang, Y. An improved generalized normal distribution optimization and its applications in numerical problems and engineering design problems. Artif. Intell. Rev. 2022spa
dcterms.bibliographicCitationAbdel-Basset, M.; Mohamed, R.; Abouhawwash, M.; Chang, V.; Askar, S. A Local Search-Based Generalized Normal Distribution Algorithm for Permutation Flow Shop Scheduling. Appl. Sci. 2021, 11, 4837spa
dcterms.bibliographicCitationZhang, Y.; Jin, Z.; Mirjalili, S. Generalized normal distribution optimization and its applications in parameter extraction of photovoltaic models. Energy Convers. Manag. 2020, 224, 113301spa
dcterms.bibliographicCitationLazarou, S.; Vita, V.; Christodoulou, C.; Ekonomou, L. Calculating Operational Patterns for Electric Vehicle Charging on a Real Distribution Network Based on Renewables’ Production. Energies 2018, 11, 2400.spa
dcterms.bibliographicCitationMarini, A.; Mortazavi, S.; Piegari, L.; Ghazizadeh, M.S. An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations. Electr. Power Syst. Res. 2019, 170, 229–243. [spa
dcterms.bibliographicCitationKaur, S.; Kumbhar, G.; Sharma, J. A MINLP technique for optimal placement of multiple DG units in distribution systems. Int. J. Electr. Power Energy Syst. 2014, 63, 609–617.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems. Electr. Power Syst. Res. 2020, 187, 106454.spa
dcterms.bibliographicCitationHerrera-Briñez, M.C.; Montoya, O.D.; Alvarado-Barrios, L.; Chamorro, H.R. The Equivalence between Successive Approximations and Matricial Load Flow Formulations. Appl. Sci. 2021, 11,spa
dcterms.bibliographicCitationSaravan, M.; Slochanal, S.; Venkatesh, P.; Abraham, P. Application of PSO technique for optimal location of FACTS devices considering system loadability and cost of installation. In Proceedings of the 2005 International Power Engineering Conference, Singapore, 29 November–2 December 2005.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doihttps://doi.org/10.3390/a16010029
dc.subject.keywordsGeneralized normal distribution optimizerspa
dc.subject.keywordsOptimal reactive power flowspa
dc.subject.keywordsDistribution static compensatorsspa
dc.subject.keywordsRadial and meshed distribution networksspa
dc.subject.keywordsAnnual operating cost minimizationspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.