Mostrar el registro sencillo del ítem
Nonlinear control for a DC–DC converter with dual active bridges in a DC microgrid
dc.contributor.author | Esteban, Francisco D. | |
dc.contributor.author | Serra, Federico M. | |
dc.contributor.author | De Angelo, Cristian Hernan | |
dc.contributor.author | Montoya, Oscar D. | |
dc.date.accessioned | 2023-05-03T13:38:02Z | |
dc.date.available | 2023-05-03T13:38:02Z | |
dc.date.issued | 2022-10-29 | |
dc.date.submitted | 2023-05-02 | |
dc.identifier.citation | Esteban, F. D., Serra, F. M., De Angelo, C. H., & Montoya, O. D. (2023). Nonlinear control for a DC–DC converter with dual active bridges in a DC microgrid. International Journal of Electrical Power and Energy Systems, 146 doi:10.1016/j.ijepes.2022.108731 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/11836 | |
dc.description.abstract | This work presents a new control strategy for a DC–DC converter with dual active bridges used to interconnect two feeders in a DC microgrid. The proposed control strategy allows regulating the output voltage of the converter while maintaining the mean primary and secondary current value of the high-frequency transformer at zero, in order to avoid magnetic saturation. The controller is designed using the nonlinear control strategy based on feedback linearization, which is based on the converter generalized space-state averaged model. The performance of the proposed controller is validated via simulation and experimental results. | spa |
dc.format.extent | 8 Páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | International Journal of Electrical Power and Energy Systems - Vol. 146 (2023) | spa |
dc.title | Nonlinear control for a DC–DC converter with dual active bridges in a DC microgrid | spa |
dcterms.bibliographicCitation | De Doncker RW, Divan DM, Kheraluwala MH. A three-phase soft switched highpower- density DC/DC converter for high-power applications. IEEE Trans Ind Appl 1988;27(1):63–73. http://dx.doi.org/10.1109/28.67533. | spa |
dcterms.bibliographicCitation | Cupelli M, Bhanderi SK, Gurumurthy SK, Monti A. Port-hamiltonian modelling and control of single phase DAB based MVDC shipboard power system. In: Proceedings: IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, vol. 1 no. 2. 2018, p. 3437–44. http://dx.doi.org/10.1109/IECON.2018. 8591433. | spa |
dcterms.bibliographicCitation | Jin L, Liu B, Duan S. ZVS soft switching operation range analysis of threelevel dual-active bridge DC–DC converter under phase shift control strategy. IEEE Trans Ind Appl 2019;27(2):1963–72. http://dx.doi.org/10.1109/TIA.2018. 2872121. | spa |
dcterms.bibliographicCitation | Abdelkarim E, Kadi S. Super twisted sliding mode control of isolated bidirectional DC-DC converter in electric vehicle. In: 2021 22nd International Middle East Power Systems Conference. MEPCON, 2021, p. 389–94. http://dx.doi.org/10. 1109/MEPCON50283.2021.9686192. | spa |
dcterms.bibliographicCitation | Xu J, Xu L, Wang X, Xie Y, He Y, Ruan X. A multilevel hybrid dual-active bridge dc-dc converter for energy storage system in higher voltage applications. In: 2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). 2020, p. 476–81. http://dx.doi.org/10.1109/PEDG48541. 2020.9244308. | spa |
dcterms.bibliographicCitation | Meshram RV, Khade SV, Wagh SR, Singh NM, Stankovíc AM. Bond graph approach for port-controlled Hamiltonian modeling for SST. Electr Power Syst Res 2018;158(2018):105–14. http://dx.doi.org/10.1016/j.epsr.2017.12.035 | spa |
dcterms.bibliographicCitation | Esteban FD, Serra FM, De Angelo CH. Control of a DC-DC dual active bridge converter in DC microgrids applications. IEEE Latin Am. Trans. 2021;19(8):1261–9. http://dx.doi.org/10.1109/TLA.2021.9475856. | spa |
dcterms.bibliographicCitation | Xiao Q, Chen L, Jia H, Wheeler P, Dragičevíc T. Model predictive control for dual active bridge in naval DC microgrids supplying pulsed power loads featuring fast transition and online transformer current minimization. IEEE Trans Ind Electron 2020;67(6):5197–203. http://dx.doi.org/10.1109/TIE.2019.2934070 | spa |
dcterms.bibliographicCitation | Wang P, Chen X, Tong C, Jia P, Wen C. Large- and small-signal averagevalue modeling of dual-active-bridge DC–DC converter with triple-phase-shift control. IEEE Trans Power Electron 2021;36(8):9237–50. http://dx.doi.org/10. 1109/TPEL.2021.3052459. | spa |
dcterms.bibliographicCitation | Esteban FD, Serra FM, De Angelo CH. Control de un convertidor DC-DC con puentes duales activos para adaptar niveles de tensión en una microrred de DC. In: Reunion En Procesamiento de la Información Y Control. RPIC 2019, 2019, p. 79–84. | spa |
dcterms.bibliographicCitation | Monika M, Rane M, Wagh S, Stanković AM, Singh NM. Development of dynamic phasor based higher index model for performance enhancement of dual active bridge. Electr Power Syst Res 2019;168:305–12. http://dx.doi.org/10.1016/j. epsr.2018.10.023. | spa |
dcterms.bibliographicCitation | Mueller JA, Kimball JW. An improved generalized average model of DC-DC dual active bridge converters. IEEE Trans Power Electron 2018;33(11):9975–88. http://dx.doi.org/10.1109/TPEL.2018.2797966. | spa |
dcterms.bibliographicCitation | Tiwary N, Venkataramana NN, Panda AK, Narendra A. Direct power control of dual active bridge bidirectional DC-dc converter. In: 2019 International Conference on Power Electronics, Control and Automation, ICPECA 2019 - Proceedings 2019. 2019, p. 1–4. http://dx.doi.org/10.1109/ICPECA47973.2019. 8975575. | spa |
dcterms.bibliographicCitation | Cupelli M, Gurumurthy SK, Bhanderi SK, Yang Z, Joebges P, Monti A, De Doncker RW. Port controlled hamiltonian modeling and ida-pbc control of dual active bridge converters for dc microgrids. IEEE Trans Ind Electron 2019;66(11):9065–75. http://dx.doi.org/10.1109/TIE.2019.2901645 | spa |
dcterms.bibliographicCitation | Tong A, Hang L, Chung HS-H, Li G. Using sampled-data modeling method to derive equivalent circuit and linearized control method for dual-active-bridge converter. IEEE J Emerg Sel Top Power Electron 2021;9(2):1361–74. http://dx. doi.org/10.1109/JESTPE.2019.2961138. | spa |
dcterms.bibliographicCitation | Dòria-Cerezo A, Serra F, Biel D, Griñó R. Sliding mode control of a dc-dc dual active bridge using the generalized space-state averaging description. In: Proc. 2021 European Control Conference. 2021, p. 1628–33. http://dx.doi.org/ 10.23919/ECC54610.2021.9655163. | spa |
dcterms.bibliographicCitation | Dòria-Cerezo A, Serra FM, Esteban FD, Biel D, Griñó R, Member S. Comparison of first- and second-order sliding-mode controllers for a DC-DC dual active bridge. IEEE Access 2022;10:40264–72. http://dx.doi.org/10.1109/ACCESS. 2022.3166913. | spa |
dcterms.bibliographicCitation | Bacha S, Munteanu I, Bratcu AI. Power Electronic Converters Modeling and Control with Case Studies. London: Springer;2014 | spa |
dcterms.bibliographicCitation | Ji Z, Wang Q, Li D, Sun Y. Fast DC-bias current control of dual active bridge converters with feedforward compensation. IEEE Trans Circuits Syst II Express Briefs 2020;67(11):2587–91. http://dx.doi.org/10.1109/TCSII.2019.2957790. | spa |
dcterms.bibliographicCitation | Qin Z, Shen Y, Loh PC, Wang H, Blaabjerg F. A dual active bridge converter with an extended high-efficiency range by DC blocking capacitor voltage control. IEEE Trans Power Electron 2018;33(7):5949–66. http://dx.doi.org/10.1109/ TPEL.2017.2746518. | spa |
dcterms.bibliographicCitation | Mu S, Guo Z, Luo Y. Universal modulation scheme to suppress transient DC bias current in dual active bridge converters. IEEE Trans Power Electron 2022;37(2):1322–33. http://dx.doi.org/10.1109/TPEL.2021.3104628. | spa |
dcterms.bibliographicCitation | Dash A, Mohanta MK, De D, Abhishek P, Castellazzi A. Modeling and mitigation of transformer saturation in dual-active-bridge converter. In: 2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia). IEEE; 2021, p. 408–13. http://dx.doi.org/10.1109/ECCE-Asia49820.2021.9479125 | spa |
dcterms.bibliographicCitation | Solsona JA, Busada C, Chiacchiarini H, El DDI. A novel feedback / feedforward control strategy for three-phase voltage-source converters. In: 2007 IEEE International Symposium on Industrial Electronics. 2007, p. 3391–6. http://dx.doi. org/10.1109/ISIE.2007.4375161. | spa |
dcterms.bibliographicCitation | Gaviria C, Fossas E, Griñó R. Robust controller for a full-bridge rectifier using the IDA approach and GSSA modeling. IEEE Trans Circuits Syst I Regul Pap 2005;52(3):609–16. http://dx.doi.org/10.1109/TCSI.2004.842881 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | https://doi.org/10.1016/j.ijepes.2022.108731 | |
dc.subject.keywords | Microgrid | spa |
dc.subject.keywords | Dual active bridge | spa |
dc.subject.keywords | High-frequency transformer | spa |
dc.subject.keywords | Generalized space state average modeling | spa |
dc.subject.keywords | Nonlinear control | spa |
dc.subject.keywords | Input–output feedback linearization | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Público general | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.