Mostrar el registro sencillo del ítem

dc.contributor.authorAtencia-de la Ossa, J
dc.contributor.authorOrozco-Henao, C.
dc.contributor.authorMarin-Quintero, J.
dc.date.accessioned2023-05-02T20:09:46Z
dc.date.available2023-05-02T20:09:46Z
dc.date.issued2023-01-02
dc.date.submitted2023-05-02
dc.identifier.citationAtencia-De la Ossa, J., Orozco-Henao, C., & Marín-Quintero, J. (2023). Master-slave strategy based in artificial intelligence for the fault section estimation in active distribution networks and microgrids. International Journal of Electrical Power and Energy Systems, 148 doi:10.1016/j.ijepes.2022.108923.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/11834
dc.description.abstractFault location plays an essential role in the integration of self-healing functionalities in active distribution networks and microgrids. However, the fault location methods formulation presents great challenges for these types of networks because the operating changes that occur them, such as changes in topology, DER connection/ disconnection and microgrids operating modes. Several fault location solutions have been proposed; nevertheless, these are strongly dependent on robust communication systems. This paper presents an artificial intelligence-based master–slave strategy for the estimation of the fault section in active distribution networks and microgrids using dispersed measurements. The strategy is composed by two stages. The master stage uses a genetic algorithm that determines the location and number of devices which maximize the faulted location e performance. The slave stage uses artificial neural networks to predict the fault section by using local voltage and current measurements trough an intelligent electronic device (IED). This approach is useful because it neglects the need of a robust communication systems and synchronization process between measurements. Here, each IED estimates the faulted section and then sends it through the single communication system to the distribution system operator control center. The presented method is validated on the modified IEEE 34-nodes test feeder where the accuracy of the strategy was 95%. The results obtained and its easy implementation indicate potential for real-life applications.spa
dc.format.extent15 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceInternational Journal of Electrical Power and Energy Systems - Vol. 148 (2023)spa
dc.titleMaster-slave strategy based in artificial intelligence for the fault section estimation in active distribution networks and microgridsspa
dcterms.bibliographicCitationGhadi MJ, Rajabi A, Ghavidel S, Azizivahed A, Li L, Zhang J. From active distribution systems to decentralized microgrids: a review on regulations and planning approaches based on operational factors. Appl Energy 2019:253. https:// doi.org/10.1016/j.apenergy.2019.113543.spa
dcterms.bibliographicCitationPerez R, V´asquez C, Viloria A. A new approach to fault location in three-phase underground distribution system using combination of wavelet analysis with ANN and FLS. J Intell Fuzzy Syst 2019:1–11. https://doi.org/10.3233/jifs-18807.spa
dcterms.bibliographicCitationJamali S, Talavat V. Accurate fault location method in distribution networks containing distributed generations. Iran J Electr Comput Eng 2011;10:27–33.spa
dcterms.bibliographicCitationOrozco-Henao C, Bretas AS, Herrera-Orozco AR, Pulgarín-Rivera JD, Dhulipala S, Wang S. Towards active distribution networks fault location: contributions considering DER analytical models and local measurements. Int J Electr Power Energy Syst 2018:99. https://doi.org/10.1016/j.ijepes.2018.01.042.spa
dcterms.bibliographicCitationOrozco-Henao C, Bretas AS, Marín-Quintero J, Herrera-Orozco A, Pulgarín- Rivera JD, Velez JC. Adaptive impedance-based fault location algorithm for active distribution networks. Appl. Sci. (Switzerland) 2018:8. https://doi.org/10.3390/ app8091563.spa
dcterms.bibliographicCitationBretas AS, Orozco-Henao C, Marín-Quintero J, Montoya OD, Gil-Gonz´alez W, Bretas NG. Microgrids physics model-based fault location formulation: analyticbased distributed energy resources effect compensation. Electr Pow Syst Res 2021: 195. https://doi.org/10.1016/j.epsr.2021.107178.spa
dcterms.bibliographicCitationPatcharoen T, Ngaopitakkul A. Fault classifications in distribution systems consisting of wind power as distributed generation using discrete wavelet transforms. Sustainability (Switzerland) 2019:11. https://doi.org/10.3390/ su11247209.spa
dcterms.bibliographicCitationShi S, Zhu B, Lei A, Dong X. Fault location for radial distribution network via topology and reclosure-generating traveling waves. IEEE Trans Smart Grid 2019; 10:6404–13. https://doi.org/10.1109/TSG.2019.2904210.spa
dcterms.bibliographicCitationXu Y, Zhao C, Xie S, Lu M. Novel fault location for high permeability active distribution networks based on improved VMD and S-transform. IEEE Access 2021; 9:17662–71. https://doi.org/10.1109/ACCESS.2021.3052349.spa
dcterms.bibliographicCitationQiao J, Yin X, Wang Y, Xu W, Tan L. A multi-terminal traveling wave fault location method for active distribution network based on residual clustering. Int J Electr Power Energy Syst 2021:131. https://doi.org/10.1016/j.ijepes.2021.107070.spa
dcterms.bibliographicCitationHosseinikia M, Talavat V. Comparison of impedance based and travelling waves based fault location methods for power distribution systems tested in a real 205- nodes distribution feeder. Trans Electr Electron Mater 2018;19:123–33. https:// doi.org/10.1007/s42341-018-0004-1.spa
dcterms.bibliographicCitationLedesma J, do Nascimento K, de Araujo L, Penido D. A two-level ANN-based method using synchronized measurements to locate high-impedance fault in distribution systems. Electric Power Syst. Res. 2020;188:106576. doi: 10.1016/J. EPSR.2020.106576.spa
dcterms.bibliographicCitationPerez R, V´asquez C, Viloria A. An intelligent strategy for faults location in V´a distribution networks with distributed generation. J Intell Fuzzy Syst 2019;36: 1627–37. https://doi.org/10.3233/JIFS-18807.spa
dcterms.bibliographicCitationTong Z, Lanxiang S, Jianchang L, Haibin Y, Xiaoming Z, Lin G, et al. Fault diagnosis and location method for active distribution network based on artificial neural network. Electr Power Compon Syst 2018;46:987–98. https://doi.org/10.1080/ 15325008.2018.1460884.spa
dcterms.bibliographicCitationForouzesh A, Golsorkhi MS, Savaghebi M, Baharizadeh M. Support vector machine based fault location identification in microgrids using interharmonic injection. Energies (Basel) 2021:14. https://doi.org/10.3390/en14082317.spa
dcterms.bibliographicCitationDashti R, Ghasemi M, Daisy M. Fault location in power distribution network with presence of distributed generation resources using impedance based method and applying Π line model. Energy 2018;159:344–60. https://doi.org/10.1016/j. energy.2018.06.111.spa
dcterms.bibliographicCitationChaitanya BK, Yadav A. An intelligent fault detection and classification scheme for distribution lines integrated with distributed generators. Comput Electr Eng 2018; 69:28–40. https://doi.org/10.1016/j.compeleceng.2018.05.025spa
dcterms.bibliographicCitationKiaei I, Lotfifard S. Fault section identification in smart distribution systems using multi-source data based on fuzzy petri nets. IEEE Trans Smart Grid 2020;11:74–83. https://doi.org/10.1109/TSG.2019.2917506.spa
dcterms.bibliographicCitationMirshekali H, Dashti R, Keshavarz A, Torabi AJ, Shaker HR. A novel fault location methodology for smart distribution networks. IEEE Trans Smart Grid 2021;12: 1277–88. https://doi.org/10.1109/TSG.2020.3031400.spa
dcterms.bibliographicCitationBishop CM. Pattern recognition and machine learning (information science and statistics). Berlin, Heidelberg: Springer-Verlag; 2006spa
dcterms.bibliographicCitationPerez-Londoño S, Garc´es A, Bueno-L´opez M, Mora-Fl´orez J. Components modelling in AC microgrids. vol. 1. UTP editorial; 2020. doi: 10.22517/97895.spa
dcterms.bibliographicCitationCorrea-Tapasco E, Mora-Fl´orez J, Perez-Londo˜no S. Performance analysis of a learning structured fault locator for distribution systems in the case of polluted inputs. Electr Pow Syst Res 2019;166:1–8. https://doi.org/10.1016/j. epsr.2018.09.016spa
dcterms.bibliographicCitationMarín-Quintero J, Orozco-Henao C, Velez JC, Bretas AS. Micro grids decentralized hybrid data-driven cuckoo search based adaptive protection model. Int J Electr Power Energy Syst 2021;130:106960. https://doi.org/10.1016/j. ijepes.2021.106960.spa
dcterms.bibliographicCitationEamonn K, Mueen A. Curse of dimensionality. In: Claude S, Webb GI, editors. Encyclopedia of machine learning and data mining. Boston, MA: Springer, US; 2017. p. 314–5. https://doi.org/10.1007/978-1-4899-7687-1_192spa
dcterms.bibliographicCitationPanigrahi B k., Kiran A, Tripathy SK, Nanda RP. Location of fault on a microgrid using travelling wave and wavelet transform method. In: 2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT) 2019. pp. 139–44. doi: 10.1109/icgciot.2018.8753038.spa
dcterms.bibliographicCitationBengio Y. Practical recommendations for gradient-based training of deep architectures. Neural networks: tricks of the trade. Springer; 2013.spa
dcterms.bibliographicCitationShahin MA, Holger MR, Jaksa MB. Data division for developing neural networks applied to geotechnical engineering. J Comput Civ Eng 2004;8:105–14. https:// doi.org/10.1061/ASCE0887-3801200418:2105.spa
dcterms.bibliographicCitationel Aziz MA, Hassanien AE. Modified cuckoo search algorithm with rough sets for feature selection. Neural Comput Appl 2018;29:925–34. https://doi.org/10.1007/ s00521-016-2473-7.spa
dcterms.bibliographicCitationRodrigues D, Pereira L, Almeida T, Papa J, Souza A, Ramos C, et al. BCS: A Binary Cuckoo Search algorithm for feature selection. In: Proceedings - IEEE international symposium on circuits and systems; 2013. p. 465–8. doi: 10.1109/ ISCAS.2013.6571881.spa
dcterms.bibliographicCitationKatoch S, Chauhan SS, Kumar V. A review on genetic algorithm: past, present, and future. Multimed Tools Appl 2021;80:8091–126. https://doi.org/10.1007/s11042- 020-10139-6spa
dcterms.bibliographicCitationDistribution System Analysis Subcommittee. IEEE 34 Node Test Feeder 2001spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doihttps://doi.org/10.1016/j.ijepes.2022.108923
dc.subject.keywordsFault sectionspa
dc.subject.keywordsActive distribution networksspa
dc.subject.keywordsMicrogridsspa
dc.subject.keywordsArtificial Intelligencespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.