Mostrar el registro sencillo del ítem
Master-slave strategy based in artificial intelligence for the fault section estimation in active distribution networks and microgrids
dc.contributor.author | Atencia-de la Ossa, J | |
dc.contributor.author | Orozco-Henao, C. | |
dc.contributor.author | Marin-Quintero, J. | |
dc.date.accessioned | 2023-05-02T20:09:46Z | |
dc.date.available | 2023-05-02T20:09:46Z | |
dc.date.issued | 2023-01-02 | |
dc.date.submitted | 2023-05-02 | |
dc.identifier.citation | Atencia-De la Ossa, J., Orozco-Henao, C., & Marín-Quintero, J. (2023). Master-slave strategy based in artificial intelligence for the fault section estimation in active distribution networks and microgrids. International Journal of Electrical Power and Energy Systems, 148 doi:10.1016/j.ijepes.2022.108923. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/11834 | |
dc.description.abstract | Fault location plays an essential role in the integration of self-healing functionalities in active distribution networks and microgrids. However, the fault location methods formulation presents great challenges for these types of networks because the operating changes that occur them, such as changes in topology, DER connection/ disconnection and microgrids operating modes. Several fault location solutions have been proposed; nevertheless, these are strongly dependent on robust communication systems. This paper presents an artificial intelligence-based master–slave strategy for the estimation of the fault section in active distribution networks and microgrids using dispersed measurements. The strategy is composed by two stages. The master stage uses a genetic algorithm that determines the location and number of devices which maximize the faulted location e performance. The slave stage uses artificial neural networks to predict the fault section by using local voltage and current measurements trough an intelligent electronic device (IED). This approach is useful because it neglects the need of a robust communication systems and synchronization process between measurements. Here, each IED estimates the faulted section and then sends it through the single communication system to the distribution system operator control center. The presented method is validated on the modified IEEE 34-nodes test feeder where the accuracy of the strategy was 95%. The results obtained and its easy implementation indicate potential for real-life applications. | spa |
dc.format.extent | 15 Páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | International Journal of Electrical Power and Energy Systems - Vol. 148 (2023) | spa |
dc.title | Master-slave strategy based in artificial intelligence for the fault section estimation in active distribution networks and microgrids | spa |
dcterms.bibliographicCitation | Ghadi MJ, Rajabi A, Ghavidel S, Azizivahed A, Li L, Zhang J. From active distribution systems to decentralized microgrids: a review on regulations and planning approaches based on operational factors. Appl Energy 2019:253. https:// doi.org/10.1016/j.apenergy.2019.113543. | spa |
dcterms.bibliographicCitation | Perez R, V´asquez C, Viloria A. A new approach to fault location in three-phase underground distribution system using combination of wavelet analysis with ANN and FLS. J Intell Fuzzy Syst 2019:1–11. https://doi.org/10.3233/jifs-18807. | spa |
dcterms.bibliographicCitation | Jamali S, Talavat V. Accurate fault location method in distribution networks containing distributed generations. Iran J Electr Comput Eng 2011;10:27–33. | spa |
dcterms.bibliographicCitation | Orozco-Henao C, Bretas AS, Herrera-Orozco AR, Pulgarín-Rivera JD, Dhulipala S, Wang S. Towards active distribution networks fault location: contributions considering DER analytical models and local measurements. Int J Electr Power Energy Syst 2018:99. https://doi.org/10.1016/j.ijepes.2018.01.042. | spa |
dcterms.bibliographicCitation | Orozco-Henao C, Bretas AS, Marín-Quintero J, Herrera-Orozco A, Pulgarín- Rivera JD, Velez JC. Adaptive impedance-based fault location algorithm for active distribution networks. Appl. Sci. (Switzerland) 2018:8. https://doi.org/10.3390/ app8091563. | spa |
dcterms.bibliographicCitation | Bretas AS, Orozco-Henao C, Marín-Quintero J, Montoya OD, Gil-Gonz´alez W, Bretas NG. Microgrids physics model-based fault location formulation: analyticbased distributed energy resources effect compensation. Electr Pow Syst Res 2021: 195. https://doi.org/10.1016/j.epsr.2021.107178. | spa |
dcterms.bibliographicCitation | Patcharoen T, Ngaopitakkul A. Fault classifications in distribution systems consisting of wind power as distributed generation using discrete wavelet transforms. Sustainability (Switzerland) 2019:11. https://doi.org/10.3390/ su11247209. | spa |
dcterms.bibliographicCitation | Shi S, Zhu B, Lei A, Dong X. Fault location for radial distribution network via topology and reclosure-generating traveling waves. IEEE Trans Smart Grid 2019; 10:6404–13. https://doi.org/10.1109/TSG.2019.2904210. | spa |
dcterms.bibliographicCitation | Xu Y, Zhao C, Xie S, Lu M. Novel fault location for high permeability active distribution networks based on improved VMD and S-transform. IEEE Access 2021; 9:17662–71. https://doi.org/10.1109/ACCESS.2021.3052349. | spa |
dcterms.bibliographicCitation | Qiao J, Yin X, Wang Y, Xu W, Tan L. A multi-terminal traveling wave fault location method for active distribution network based on residual clustering. Int J Electr Power Energy Syst 2021:131. https://doi.org/10.1016/j.ijepes.2021.107070. | spa |
dcterms.bibliographicCitation | Hosseinikia M, Talavat V. Comparison of impedance based and travelling waves based fault location methods for power distribution systems tested in a real 205- nodes distribution feeder. Trans Electr Electron Mater 2018;19:123–33. https:// doi.org/10.1007/s42341-018-0004-1. | spa |
dcterms.bibliographicCitation | Ledesma J, do Nascimento K, de Araujo L, Penido D. A two-level ANN-based method using synchronized measurements to locate high-impedance fault in distribution systems. Electric Power Syst. Res. 2020;188:106576. doi: 10.1016/J. EPSR.2020.106576. | spa |
dcterms.bibliographicCitation | Perez R, V´asquez C, Viloria A. An intelligent strategy for faults location in V´a distribution networks with distributed generation. J Intell Fuzzy Syst 2019;36: 1627–37. https://doi.org/10.3233/JIFS-18807. | spa |
dcterms.bibliographicCitation | Tong Z, Lanxiang S, Jianchang L, Haibin Y, Xiaoming Z, Lin G, et al. Fault diagnosis and location method for active distribution network based on artificial neural network. Electr Power Compon Syst 2018;46:987–98. https://doi.org/10.1080/ 15325008.2018.1460884. | spa |
dcterms.bibliographicCitation | Forouzesh A, Golsorkhi MS, Savaghebi M, Baharizadeh M. Support vector machine based fault location identification in microgrids using interharmonic injection. Energies (Basel) 2021:14. https://doi.org/10.3390/en14082317. | spa |
dcterms.bibliographicCitation | Dashti R, Ghasemi M, Daisy M. Fault location in power distribution network with presence of distributed generation resources using impedance based method and applying Π line model. Energy 2018;159:344–60. https://doi.org/10.1016/j. energy.2018.06.111. | spa |
dcterms.bibliographicCitation | Chaitanya BK, Yadav A. An intelligent fault detection and classification scheme for distribution lines integrated with distributed generators. Comput Electr Eng 2018; 69:28–40. https://doi.org/10.1016/j.compeleceng.2018.05.025 | spa |
dcterms.bibliographicCitation | Kiaei I, Lotfifard S. Fault section identification in smart distribution systems using multi-source data based on fuzzy petri nets. IEEE Trans Smart Grid 2020;11:74–83. https://doi.org/10.1109/TSG.2019.2917506. | spa |
dcterms.bibliographicCitation | Mirshekali H, Dashti R, Keshavarz A, Torabi AJ, Shaker HR. A novel fault location methodology for smart distribution networks. IEEE Trans Smart Grid 2021;12: 1277–88. https://doi.org/10.1109/TSG.2020.3031400. | spa |
dcterms.bibliographicCitation | Bishop CM. Pattern recognition and machine learning (information science and statistics). Berlin, Heidelberg: Springer-Verlag; 2006 | spa |
dcterms.bibliographicCitation | Perez-Londoño S, Garc´es A, Bueno-L´opez M, Mora-Fl´orez J. Components modelling in AC microgrids. vol. 1. UTP editorial; 2020. doi: 10.22517/97895. | spa |
dcterms.bibliographicCitation | Correa-Tapasco E, Mora-Fl´orez J, Perez-Londo˜no S. Performance analysis of a learning structured fault locator for distribution systems in the case of polluted inputs. Electr Pow Syst Res 2019;166:1–8. https://doi.org/10.1016/j. epsr.2018.09.016 | spa |
dcterms.bibliographicCitation | Marín-Quintero J, Orozco-Henao C, Velez JC, Bretas AS. Micro grids decentralized hybrid data-driven cuckoo search based adaptive protection model. Int J Electr Power Energy Syst 2021;130:106960. https://doi.org/10.1016/j. ijepes.2021.106960. | spa |
dcterms.bibliographicCitation | Eamonn K, Mueen A. Curse of dimensionality. In: Claude S, Webb GI, editors. Encyclopedia of machine learning and data mining. Boston, MA: Springer, US; 2017. p. 314–5. https://doi.org/10.1007/978-1-4899-7687-1_192 | spa |
dcterms.bibliographicCitation | Panigrahi B k., Kiran A, Tripathy SK, Nanda RP. Location of fault on a microgrid using travelling wave and wavelet transform method. In: 2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT) 2019. pp. 139–44. doi: 10.1109/icgciot.2018.8753038. | spa |
dcterms.bibliographicCitation | Bengio Y. Practical recommendations for gradient-based training of deep architectures. Neural networks: tricks of the trade. Springer; 2013. | spa |
dcterms.bibliographicCitation | Shahin MA, Holger MR, Jaksa MB. Data division for developing neural networks applied to geotechnical engineering. J Comput Civ Eng 2004;8:105–14. https:// doi.org/10.1061/ASCE0887-3801200418:2105. | spa |
dcterms.bibliographicCitation | el Aziz MA, Hassanien AE. Modified cuckoo search algorithm with rough sets for feature selection. Neural Comput Appl 2018;29:925–34. https://doi.org/10.1007/ s00521-016-2473-7. | spa |
dcterms.bibliographicCitation | Rodrigues D, Pereira L, Almeida T, Papa J, Souza A, Ramos C, et al. BCS: A Binary Cuckoo Search algorithm for feature selection. In: Proceedings - IEEE international symposium on circuits and systems; 2013. p. 465–8. doi: 10.1109/ ISCAS.2013.6571881. | spa |
dcterms.bibliographicCitation | Katoch S, Chauhan SS, Kumar V. A review on genetic algorithm: past, present, and future. Multimed Tools Appl 2021;80:8091–126. https://doi.org/10.1007/s11042- 020-10139-6 | spa |
dcterms.bibliographicCitation | Distribution System Analysis Subcommittee. IEEE 34 Node Test Feeder 2001 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | https://doi.org/10.1016/j.ijepes.2022.108923 | |
dc.subject.keywords | Fault section | spa |
dc.subject.keywords | Active distribution networks | spa |
dc.subject.keywords | Microgrids | spa |
dc.subject.keywords | Artificial Intelligence | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Público general | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.