Mostrar el registro sencillo del ítem
An Efficient Methodology for Locating and Sizing PV Generators in Radial Distribution Networks Using a Mixed-Integer Conic Relaxation
dc.contributor.author | Montoya, Oscar Danilo | |
dc.contributor.author | Ramos-Paja, Carlos Andrés | |
dc.contributor.author | Grisales-Noreña, Luis Fernando | |
dc.date.accessioned | 2022-10-05T12:25:33Z | |
dc.date.available | 2022-10-05T12:25:33Z | |
dc.date.issued | 2022-07-27 | |
dc.date.submitted | 2022-09-30 | |
dc.identifier.citation | Montoya, O.D.; Ramos-Paja, C.A.; Grisales-Noreña, L.F. An Efficient Methodology for Locating and Sizing PV Generators in Radial Distribution Networks Using a Mixed-Integer Conic Relaxation. Mathematics 2022, 10, 2626. https://doi.org/10.3390/math10152626 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/11127 | |
dc.description.abstract | This paper proposes a new solution methodology based on a mixed-integer conic formulation to locate and size photovoltaic (PV) generation units in AC distribution networks with a radial structure. The objective function comprises the annual expected energy costs of the conventional substation in addition to the investment and operating costs of PV sources. The original optimization model that represents this problem belongs to the family of mixed-integer nonlinear programming (MINLP); however, the complexity of the power balance constraints make it difficult to find the global optimum. In order to improve the quality of the optimization model, a mixed-integer conic (MIC) formulation is proposed in this research in order to represent the studied problem. Numerical results in two test feeders composed of 33 and 69 nodes demonstrate the effectiveness of the proposed MIC model when compared to multiple metaheuristic optimizers such as the Chu and Beasley Genetic Algorithm, the Newton Metaheuristic Algorithm, the Vortex Search Algorithm, the Gradient-Based Metaheuristic Optimization Algorithm, and the Arithmetic Optimization Algorithm, among others. The final results obtained with the MIC model show improvements greater than USD 100,000 per year of operation. All simulations were run in the MATLAB programming environment, using its own scripts for all the metaheuristic algorithms and the disciplined convex tool known as CVX with the Gurobi solver in order to solve the proposed MIC model. | spa |
dc.format.extent | 17 Páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Mathematics Vol. 10 N° 15 (2022) | spa |
dc.title | An Efficient Methodology for Locating and Sizing PV Generators in Radial Distribution Networks Using a Mixed-Integer Conic Relaxation | spa |
dcterms.bibliographicCitation | Strezoski, L.; Stefani, I. Utility DERMS for Active Management of Emerging Distribution Grids with High Penetration of Renewable DERs. Electronics 2021, 10, 2027. | spa |
dcterms.bibliographicCitation | Borghetti, A.; Nucci, C.A. Integration of distributed energy resources in distribution power systems. In Integration of Distributed Energy Resources in Power Systems; Elsevier: Amsterdam, The Netherlands, 2016; pp. 15–50. | spa |
dcterms.bibliographicCitation | Chicco, G.; Ciocia, A.; Colella, P.; Leo, P.D.; Mazza, A.; Musumeci, S.; Pons, E.; Russo, A.; Spertino, F. Introduction—Advances and Challenges in Active Distribution Systems. In Lecture Notes in Electrical Engineering; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–42. | spa |
dcterms.bibliographicCitation | Jelti, F.; Allouhi, A.; Büker, M.S.; Saadani, R.; Jamil, A. Renewable Power Generation: A Supply Chain Perspective. Sustainability 2021, 13, 1271. | spa |
dcterms.bibliographicCitation | Marneni, A.; Kulkarni, A.; Ananthapadmanabha, T. Loss Reduction and Voltage Profile Improvement in a Rural Distribution Feeder Using Solar Photovoltaic Generation and Rural Distribution Feeder Optimization Using HOMER. Procedia Technol. 2015, 21, 507–513. | spa |
dcterms.bibliographicCitation | Elkadeem, M.R.; Alaam, M.A.; Azmy, A. Reliability Improvement of Power Distribution Systems using Advanced Distribution Automation. Renew. Energy Sustain. Dev. 2017, 3, 24–32. | spa |
dcterms.bibliographicCitation | Strezoski, L.; Padullaparti, H.; Ding, F.; Baggu, M. Integration of Utility Distributed Energy Resource Management System and Aggregators for Evolving Distribution System Operators. J. Mod. Power Syst. Clean Energy 2022, 10, 277–285. | spa |
dcterms.bibliographicCitation | Fernández, G.; Galan, N.; Marquina, D.; Martínez, D.; Sanchez, A.; López, P.; Bludszuweit, H.; Rueda, J. Photovoltaic Generation Impact Analysis in Low Voltage Distribution Grids. Energies 2020, 13, 4347 | spa |
dcterms.bibliographicCitation | Fischetti, M.; Pisinger, D. Mathematical Optimization and Algorithms for Offshore Wind Farm Design: An Overview. Bus. Inf. Syst. Eng. 2018, 61, 469–485 | spa |
dcterms.bibliographicCitation | Lakshmi, S.; Ganguly, S. Transition of Power Distribution System Planning from Passive to Active Networks: A State-of-the-Art Review and a New Proposal. In Sustainable Energy Technology and Policies; Springer: Singapore, 2017; pp. 87–117. | spa |
dcterms.bibliographicCitation | Gomez, A.L.; Arredondo, C.A.; Luna, M.A.; Villegas, S.; Hernandez, J. Regulating the integration of renewable energy in Colombia: Implications of Law 1715 of 2014. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016 | spa |
dcterms.bibliographicCitation | Lezama, J.M.L.; Villada, F.; Galeano, N.M. Effects of Incentives for Renewable Energy in Colombia. Ing. Univ. 2017, 21. | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Rivas-Trujillo, E.; Hernández, J.C. A Two-Stage Approach to Locate and Size PV Sources in Distribution Networks for Annual Grid Operative Costs Minimization. Electronics 2022, 11, 961. | spa |
dcterms.bibliographicCitation | Mai, T.T.; Nguyen, P.H.; Tran, Q.T.; Cagnano, A.; Carne, G.D.; Amirat, Y.; Le, A.T.; Tuglie, E.D. An overview of grid-edge control with the digital transformation. Electr. Eng. 2021, 103, 1989–2007. | spa |
dcterms.bibliographicCitation | Bjørnebye, H.; Hagem, C.; Lind, A. Optimal location of renewable power. Energy 2018, 147, 1203–1215 | spa |
dcterms.bibliographicCitation | Mosetti, G.; Poloni, C.; Diviacco, B. Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm. J. Wind. Eng. Ind. Aerodyn. 1994, 51, 105–116. [ | spa |
dcterms.bibliographicCitation | . Kåberger, T. Progress of renewable electricity replacing fossil fuels. Glob. Energy Interconnect. 2018, 1, 48–52. | spa |
dcterms.bibliographicCitation | Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. | spa |
dcterms.bibliographicCitation | Betakova, V.; Vojar, J.; Sklenicka, P. Wind turbines location: How many and how far? Appl. Energy 2015, 151, 23–31 | spa |
dcterms.bibliographicCitation | Sander, L.; Jung, C.; Schindler, D. Greenhouse Gas Savings Potential under Repowering of Onshore Wind Turbines and Climate Change: A Case Study from Germany. Wind 2021, 1, 1–19 | spa |
dcterms.bibliographicCitation | O ˘guz, E.; ¸Sentürk, A.E. Selection of the Most Sustainable Renewable Energy System for Bozcaada Island: Wind vs. Photovoltaic. Sustainability 2019, 11, 4098. [ | spa |
dcterms.bibliographicCitation | López, A.R.; Krumm, A.; Schattenhofer, L.; Burandt, T.; Montoya, F.C.; Oberländer, N.; Oei, P.Y. Solar PV generation in Colombia - A qualitative and quantitative approach to analyze the potential of solar energy market. Renew. Energy 2020, 148, 1266–1279 | spa |
dcterms.bibliographicCitation | Sihotang, M.A.; Okajima, K. Photovoltaic Power Potential Analysis in Equator Territorial: Case Study of Makassar City, Indonesia. J. Power Energy Eng. 2017, 5, 15–29. | spa |
dcterms.bibliographicCitation | Valencia, A.; Hincapie, R.A.; Gallego, R.A. Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium–low voltage distribution networks. J. Energy Storage 2021, 34, 102158 | spa |
dcterms.bibliographicCitation | Mokarram, M.; Mokarram, M.J.; Khosravi, M.R.; Saber, A.; Rahideh, A. Determination of the optimal location for constructing solar photovoltaic farms based on multi-criteria decision system and Dempster–Shafer theory. Sci. Rep. 2020, 10, 8200 | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Grisales-Noreña, L.F.; Perea-Moreno, A.J. Optimal Investments in PV Sources for Grid-Connected Distribution Networks: An Application of the Discrete–Continuous Genetic Algorithm. Sustainability 2021, 13, 13633. | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Grisales-Noreña, L.F.; Alvarado-Barrios, L.; Arias-Londoño, A.; Álvarez-Arroyo, C. Efficient Reduction in the Annual Investment Costs in AC Distribution Networks via Optimal Integration of Solar PV Sources Using the Newton Metaheuristic Algorithm. Appl. Sci. 2021, 11, 11525. | spa |
dcterms.bibliographicCitation | Feron, S. Sustainability of Off-Grid Photovoltaic Systems for Rural Electrification in Developing Countries: A Review. Sustainability 2016, 8, 1326. | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Grisales-Noreña, L.F.; Giral-Ramírez, D.A. Optimal Placement and Sizing of PV Sources in Distribution Grids Using a Modified Gradient-Based Metaheuristic Optimizer. Sustainability 2022, 14, 3318. | spa |
dcterms.bibliographicCitation | Chowdhury, S.; Matlokotsi, T. Optimal placement and sizing of renewable distributed generation in electricity networks considering different load models. In Proceedings of the 2017 52nd International Universities Power Engineering Conference (UPEC), Heraklion, Greece, 28–31 August 2017. | spa |
dcterms.bibliographicCitation | Cortés-Caicedo, B.; Molina-Martin, F.; Grisales-Noreña, L.F.; Montoya, O.D.; Hernández, J.C. Optimal Design of PV Systems in Electrical Distribution Networks by Minimizing the Annual Equivalent Operative Costs through the Discrete-Continuous Vortex Search Algorithm. Sensors 2022, 22, 851 | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Giral-Ramírez, D.A.; Hernández, J.C. Efficient Integration of PV Sources in Distribution Networks to Reduce Annual Investment and Operating Costs Using the Modified Arithmetic Optimization Algorithm. Electronics 2022, 11, 1680 | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Grisales-Noreña, L.F.; Ramos-Paja, C.A. Optimal Allocation and Sizing of PV Generation Units in Distribution Networks via the Generalized Normal Distribution Optimization Approach. Computers 2022, 11, 53. | spa |
dcterms.bibliographicCitation | Katsigiannis, Y.A.; Georgilakis, P.S.; Karapidakis, E.S. Hybrid Simulated Annealing–Tabu Search Method for Optimal Sizing of Autonomous Power Systems With Renewables. IEEE Trans. Sustain. Energy 2012, 3, 330–338. | spa |
dcterms.bibliographicCitation | Lavaei, J.; Low, S.H. Zero Duality Gap in Optimal Power Flow Problem. IEEE Trans. Power Syst. 2012, 27, 92–107 | spa |
dcterms.bibliographicCitation | Zohrizadeh, F.; Josz, C.; Jin, M.; Madani, R.; Lavaei, J.; Sojoudi, S. A survey on conic relaxations of optimal power flow problem. Eur. J. Oper. Res. 2020, 287, 391–409. | spa |
dcterms.bibliographicCitation | Farivar, M.; Low, S.H. Branch Flow Model: Relaxations and Convexification—Part I. IEEE Trans. Power Syst. 2013, 28, 2554–2564 | spa |
dcterms.bibliographicCitation | Farivar, M.; Low, S.H. Branch Flow Model: Relaxations and Convexification—Part II. IEEE Trans. Power Syst. 2013, 28, 2565–2572. | spa |
dcterms.bibliographicCitation | Kaur, S.; Kumbhar, G.; Sharma, J. A MINLP technique for optimal placement of multiple DG units in distribution systems. Int. J. Electr. Power Energy Syst. 2014, 63, 609–617. | spa |
dcterms.bibliographicCitation | Gallego-Pareja, L.A.; Lopez-Lezama, J.M.; Gomez-Carmona, O. Optimal Placement of Capacitors, Voltage Regulators, and Distributed Generators in Electric Power Distribution Systems. Ingeniería 2020, 25, 334–354 | spa |
dcterms.bibliographicCitation | Montoya-Giraldo, O.D.; Arias-Londoño, A.; Molina-Cabrera, A. Branch Optimal Power Flow Model for DC Networks with Radial Structure: A Conic Relaxation. Tecnura 2022, 26, 30–42 | spa |
dcterms.bibliographicCitation | Benson, H.Y.; Sa ˘glam, Ü. Mixed-Integer Second-Order Cone Programming: A Survey. In Theory Driven by Influential Applications; INFORMS: Catonsville, MD, USA, 2013; pp. 13–36 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.doi | https://doi.org/10.3390/math10152626 | |
dc.subject.keywords | Photovoltaic system | spa |
dc.subject.keywords | Investment and operating costs | spa |
dc.subject.keywords | Mixed-integer conic optimization | spa |
dc.subject.keywords | Radial distribution networks | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.