Mostrar el registro sencillo del ítem

dc.contributor.authorAcevedo Barrios, Rosa
dc.contributor.authorRubiano‑Labrador, Carolina
dc.contributor.authorNavarro‑Narvaez, Dhania
dc.contributor.authorEscobar‑Galarza, Johana
dc.contributor.authorGonzález, Diana
dc.contributor.authorMira, Stephanie
dc.contributor.authorMoreno, Dayana
dc.contributor.authorContreras, Aura
dc.contributor.authorMiranda‑Castro, Wendy
dc.date.accessioned2022-09-29T13:24:09Z
dc.date.available2022-09-29T13:24:09Z
dc.date.issued2022-08-08
dc.date.submitted2022-09-28
dc.identifier.citationAcevedo-Barrios, R., Rubiano-Labrador, C., Navarro-Narvaez, D. et al. Perchlorate-reducing bacteria from Antarctic marine sediments. Environ Monit Assess 194, 654 (2022). https://doi.org/10.1007/s10661-022-10328-wspa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/11121
dc.description.abstractPerchlorate is a contaminant that can persist in groundwater and soil, and is frequently detected in diferent ecosystems at concentrations relevant to human health. This study isolated and characterised halotolerant bacteria that can potentially perform perchlorate reduction. Bacterial microorganisms were isolated from marine sediments on Deception, Horseshoe and Half Moon Islands of Antarctica. The results of the 16S ribosomal RNA (rRNA) gene sequence analysis indicated that the isolates were phylogenetically related to Psychrobacter cryohalolentis, Psychrobacter urativorans, Idiomarina loihiensis, Psychrobacter nivimaris, Sporosarcina aquimarina and Pseudomonas lactis. The isolates grew at a sodium chloride concentration of up to 30% and a perchlorate concentration of up to 10,000 mg/L, which showed their ability to survive in saline conditions and high perchlorate concentrations. Between 21.6 and 40% of perchlorate was degraded by the isolated bacteria. P. cryohalolentis and P. urativorans degraded 30.3% and 32.6% of perchlorate, respectively. I. loihiensis degraded 40% of perchlorate, and P. nivimaris, S. aquimarina and P. lactis degraded 22%, 21.8% and 21.6% of perchlorate, respectively. I. loihiensis had the highest reduction in perchlorate, whereas P. lactis had the lowest reduction. This study is signifcant as it is the frst fnding of P. cryohalolentis and. P. lactis on the Antarctic continent. In conclusion, these bacteria isolated from marine sediments on Antarctica ofer promising resources for the bioremediation of perchlorate contamination due to their ability to degrade perchlorate, showing their potential use as a biological system to reduce perchlorate in highsalinity ecosystems.spa
dc.format.extent13 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceSpringerLink - Environmental Monitoring and Assessment Vol. 194 N° 654spa
dc.titlePerchlorate-reducing bacteria from Antarctic marine sedimentsspa
dcterms.bibliographicCitationAbd-Elnaby, H. M., Abou-Elela, G. M., Ghozlan, H. A., Hussein, H., & Sabry, S. A. (2016). Characterization and bioremediation potential of marine Psychrobacter species. The Egyptian Journal of Aquatic Research, 42(2), 193–203. https://doi.org/10.1016/j.ejar.2016.04.003spa
dcterms.bibliographicCitationAcevedo-Barrios, R., Bertel-Sevilla, A., Alonso-Molina, J., & Olivero-Verbel, J. (2016). Perchlorate tolerant bacteria from saline environments at the Caribbean region of Colombia. Toxicology Letters, 259, S103. https://doi.org/10.1016/j.toxlet.2016.07.257 - DOIspa
dcterms.bibliographicCitationAcevedo-Barrios, R., Bertel-Sevilla, A., Alonso-Molina, J., & Olivero-Verbel, J. (2019a). Perchlorate-reducing bacteria from hypersaline soils of the Colombian Caribbean. International Journal of Microbiology, 2019, 1–13. https://doi.org/10.1155/2019/6981865 - DOIspa
dcterms.bibliographicCitationAcevedo-Barrios, R., & Olivero-Verbel, J. (2021). Perchlorate contamination: Sources, effects, and technologies for remediation (pp. 103–120). https://doi.org/10.1007/398_2021_66spa
dcterms.bibliographicCitationAcevedo-Barrios, R., Rubiano-Labrador, C., & Miranda-Castro, W. (2022). Presence of perchlorate in marine sediments from Antarctica during 2017–2020. Environmental Monitoring and Assessment, 194(2), 102. https://doi.org/10.1007/s10661-022-09765-4 - DOIspa
dcterms.bibliographicCitationAcevedo-Barrios, R., Sabater-Marco, C., & Olivero-Verbel, J. (2018). Ecotoxicological assessment of perchlorate using in vitro and in vivo assays. Environmental Science and Pollution Research, 25(14), 13697–13708. https://doi.org/10.1007/s11356-018-1565-6 - DOIspa
dcterms.bibliographicCitationAcevedo-Barrios, R., Sabater-Marco, C., & Olivero-Verbel, J. (2019b). Perchlorate toxicity in organisms from different trophic levels, (September), 2–3. https://doi.org/10.1016/j.toxlet.2019.09.00spa
dcterms.bibliographicCitationAchenbach, L. A., & Coates, J. D. (2004). Microbial perchlorate reduction: Roket-fuelled metabolism. Nature reviews. Microbiology, 2(July). https://doi.org/10.1038/nrmicro926spa
dcterms.bibliographicCitationAchenbach, L. A., Michaelidou, U., Bruce, R. A., Fryman, J., & Coates, J. D. (2001). Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per) chlorate-reducing bacteria and their phylogenetic position. International Journal of Systematic and Evolutionary Microbiology, 51(2), 527–533.spa
dcterms.bibliographicCitationAguila-Müller, I. (2015). Invasores Antárticos. Universidad de Magallanes.spa
dcterms.bibliographicCitationAhn, C. H., Oh, H., Ki, D., Van Ginkel, S. W., Rittmann, B. E., & Park, J. (2009). Bacterial biofilm-community selection during autohydrogenotrophic reduction of nitrate and perchlorate in ion-exchange brine. Applied Microbiology and Biotechnology, 81(6), 1169–1177. https://doi.org/10.1007/s00253-008-1797-3 - DOIspa
dcterms.bibliographicCitationAmato, P., & Christner, B. C. (2009). Energy metabolism response to low-temperature and frozen conditions in Psychrobacter cryohalolentis. Applied and Environmental Microbiology, 75(3), 711–718. https://doi.org/10.1128/AEM.02193-08 - DOIspa
dcterms.bibliographicCitationAzevedo, J. S. N., Correia, A., & Henriques, I. (2013). Molecular analysis of the diversity of genus Psychrobacter present within a temperate estuary. FEMS Microbiology Ecology, 84(3), 451–460. https://doi.org/10.1111/1574-6941.12075 - DOIspa
dcterms.bibliographicCitationBahamdain, L., Fahmy, F., Lari, S., & Aly, M. (2015). Characterization of some Bacillus strains obtained from marine habitats using different taxonomical methods. Life Science Journal, 12(4).spa
dcterms.bibliographicCitationBakermans, C., Ayala-del-Río, H. L., Ponder, M. A., Vishnivetskaya, T., Gilichinsky, D., Thomashow, M. F., & Tiedje, J. M. (2006). Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. International Journal of Systematic and Evolutionary Microbiology, 56(6), 1285–1291. https://doi.org/10.1099/ijs.0.64043-0spa
dcterms.bibliographicCitationBardiya, N., & Bae, J. H. (2011). Dissimilatory perchlorate reduction: A review. Microbiological Research, 166(4), 237–254. https://doi.org/10.1016/j.micres.2010.11.005 - DOIspa
dcterms.bibliographicCitationBendia, A. G., Araujo, G. G., Pulschen, A. A., Contro, B., Duarte, R. T. D., Rodrigues, F., et al. (2018a). Surviving in hot and cold: Psychrophiles and thermophiles from Deception Island volcano, Antarctica. Extremophiles, 22(6), 917–929. https://doi.org/10.1007/s00792-018-1048-1 - DOIspa
dcterms.bibliographicCitationBendia, A. G., Signori, C. N., Franco, D. C., Duarte, R. T. D., Bohannan, B. J. M., & Pellizari, V. H. (2018b). A mosaic of geothermal and marine features shapes microbial community structure on deception Island Volcano, Antarctica. Frontiers in Microbiology, 9(MAY), 1–13. https://doi.org/10.3389/fmicb.2018.00899 - DOIspa
dcterms.bibliographicCitationBoone, D. R., Castenholz, R. W., Garrity, G. M., Brenner, D. J., Krieg, N. R., & Staley, J. T. (2005). Bergey’s Manual® of Systematic Bacteriology. (Brenner D. J., Krieg N. R., & Staley J. T., Eds.)Bergey’s Manual® of Systematic Bacteriology (Vol. 2). Boston, MA: Springer Science & Business Mediaspa
dcterms.bibliographicCitationBowman, J. P. (2006). The genus Psychrobacter. In The Prokaryotes (pp. 920–930). https://doi.org/10.1099/00207713-42-1-44spa
dcterms.bibliographicCitationBowman, J. P., Cavanagh, J., Austin, J. J., & Sanderson, K. (1996). Novel Psychrobacter species from Antarctic ornithogenic soils. International Journal of Systematic Bacteriology, 46(4), 841–848. https://doi.org/10.1099/00207713-46-4-841 - DOIspa
dcterms.bibliographicCitationBozal, N., Montes, M. J., Tudela, E., & Guinea, J. (2003). Characterization of several Psychrobacter strains isolated from Antarctic environments and description of Psychrobacter luti sp. nov. and Psychrobacter fozii sp. nov. International Journal of Systematic and Evolutionary Microbiology, 53(4), 1093–1100. https://doi.org/10.1099/ijs.0.02457-0spa
dcterms.bibliographicCitationBrown, G. M., & Gu, B. (2006). The chemistry of perchlorate in the environment. Perchlorate: Environmental Occurrence, Interactions and Treatment, 17–47. https://doi.org/10.1007/0-387-31113-0_2spa
dcterms.bibliographicCitationBruce, R. A., Achenbach, L. A., & Coates, J. D. (1999). Reduction of (per)chlorate by a novel organism isolated from paper mill waste. Environmental Microbiology, 1(4), 319–329. https://doi.org/10.1046/j.1462-2920.1999.00042.x - DOIspa
dcterms.bibliographicCitationCalderón, R., Godoy, F., Escudey, M., & Palma, P. (2017). A review of perchlorate (ClO4−) occurrence in fruits and vegetables. Environmental Monitoring and Assessment, 189(2). https://doi.org/10.1007/s10661-017-5793-xspa
dcterms.bibliographicCitationCalderón, R., Palma, P., Parker, D., Molina, M., Godoy, F. A., & Escudey, M. (2014). Perchlorate levels in soil and waters from the Atacama Desert. Archives of Environmental Contamination and Toxicology, 66(2), 155–161. https://doi.org/10.1007/s00244-013-9960-y - DOIspa
dcterms.bibliographicCitationCang, Y., Roberts, D. J., & Clifford, D. A. (2004). Development of cultures capable of reducing perchlorate and nitrate in high salt solutions. Water Research, 38(14), 3322–3330. - DOIspa
dcterms.bibliographicCitationCao, F., Jaunat, J., Sturchio, N., Cancès, B., Morvan, X., Devos, A., et al. (2019). Worldwide occurrence and origin of perchlorate ion in waters: A review. Science of the Total Environment, 661, 737–749. https://doi.org/10.1016/j.scitotenv.2019.01.107 - DOIspa
dcterms.bibliographicCitationCarlström, C. I., Lucas, L. N., Rohde, R. A., Haratian, A., Engelbrektson, A. L., & Coates, J. D. (2016). Characterization of an anaerobic marine microbial community exposed to combined fluxes of perchlorate and salinity. Applied Microbiology and Biotechnology, 100(22), 9719–9732. https://doi.org/10.1007/s00253-016-7780-5 - DOIspa
dcterms.bibliographicCitationCastelán-Sánchez, H. G., Elorrieta, P., Romoacca, P., Liñan-Torres, A., Sierra, J. L., Vera, I., et al. (2019). Intermediate-salinity systems at high altitudes in the Peruvian Andes unveil a high diversity and abundance of bacteria and viruses. Genes, 10(11), 891. https://doi.org/10.3390/genes10110891 - DOIspa
dcterms.bibliographicCitationCenturion, V. B., Delforno, T. P., Lacerda-Júnior, G. V., Duarte, A. W. F., Silva, L. J., Bellini, G. B., et al. (2019). Unveiling resistome profiles in the sediments of an Antarctic volcanic island. Environmental Pollution, 255, 113240. https://doi.org/10.1016/j.envpol.2019.113240 - DOIspa
dcterms.bibliographicCitationChambers, S. D., Hong, S. B., Williams, A. G., Crawford, J., Griffiths, A. D., & Park, S. J. (2014). Characterising terrestrial influences on Antarctic air masses using Radon-222 measurements at King George Island. Atmospheric Chemistry and Physics, 14(18), 9903–9916. https://doi.org/10.5194/acp-14-9903-2014 - DOIspa
dcterms.bibliographicCitationChaudhuri, S. K., O’connor, S. M., Gustavson, R. L., Achenbach, L. A., & Coates, J. D. (2002). Environmental factors that control microbial perchlorate reduction. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 68(9), 4425–4430. https://doi.org/10.1128/AEM.68.9.4425-4430.2002 - DOIspa
dcterms.bibliographicCitationChe, S., Song, L., Song, W., Yang, M., Liu, G., & Lin, X. (2013). Complete genome sequence of Antarctic bacterium Psychrobacter sp. strain G. Genome Announcements, 1(5), 2012–2013. https://doi.org/10.1128/genomeA.e00725-13spa
dcterms.bibliographicCitationChung, J., Shin, S., & Oh, J. (2009). Characterization of a microbial community capable of reducing perchlorate and nitrate in high salinity. Biotechnology Letters, 31(7), 959–966. https://doi.org/10.1007/s10529-009-9960-1 - DOIspa
dcterms.bibliographicCitationCorrea, T., & Abreu, F. (2020). Antarctic microorganisms as sources of biotechnological products. In Physiological and Biotechnological Aspects of Extremophiles (pp. 269–284). Elsevier. https://doi.org/10.1016/B978-0-12-818322-9.00020-4spa
dcterms.bibliographicCitationCowan, D. A., Makhalanyane, T. P., Dennis, P. G., & Hopkins, D. W. (2014). Microbial ecology and biogeochemistry of continental antarctic soils. Frontiers in Microbiology, 5(APR), 1–10. https://doi.org/10.3389/fmicb.2014.00154spa
dcterms.bibliographicCitationCrawford, T. Z., Kub, A. D., Peterson, K. M., Cox, T. S., & Cole-Dai, J. (2017). Reduced perchlorate in West Antarctica snow during stratospheric ozone hole. Antarctic Science, 29(3), 292–296. https://doi.org/10.1017/S0954102016000705 - DOIspa
dcterms.bibliographicCitationDeng, Z., Han, X., Chen, C., Wang, H., Ma, B., & Zhang, D. (2020). The distribution characteristics of polychlorinated biphenyls ( PCBs ) in the surface sediments of Ross Sea and Drake Passage, Antarctica: A 192 congeners analysis. Marine Pollution Bulletin, 154 (December 2019), 111043. https://doi.org/10.1016/j.marpolbul.2020.111043spa
dcterms.bibliographicCitationDonachie, S. P. (2003). Idiomarina loihiensis sp. nov., a halophilic -Proteobacterium from the Lo’ihi submarine volcano, Hawai’i. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 53(6), 1873–1879. https://doi.org/10.1099/ijs.0.02701-0spa
dcterms.bibliographicCitationEck, W. S. (2015). Chapter 28 - Wildlife Toxicity assessment for perchlorate. In M. A. Williams, G. Reddy, M. J. Quinn, & M. S. Johnson (Eds.), Wildlife toxicity assessments for chemicals of military concern (pp. 499–553). Elsevier. https://doi.org/10.1016/B978-0-12-800020-5.00028-4spa
dcterms.bibliographicCitationFernández, L. A., Zalba, P., Gómez, M. A., & Sagardoy, M. A. (2005). Bacterias solubilizadoras de fosfato inorgánico aisladas de suelos de la región sojera. Ciencia Del Suelo, 23(1), 31–37.spa
dcterms.bibliographicCitationFlores, P. A. M., Correa Llantén, D. N., & Blamey, J. M. (2018). A thermophilic microorganism from Deception Island, Antarctica with a thermostable glutamate dehydrogenase activity. Biological Research, 51(1), 1–7. https://doi.org/10.1186/s40659-018-0206-3 - DOIspa
dcterms.bibliographicCitationGalbán-Malagón, C., Collins, B., & Barria, K. (2019). Las rutas de la contaminación antártica.spa
dcterms.bibliographicCitationGholamian, F., Sheikh-Mohseni, M. A., & Salavati-Niasari, M. (2011). Highly selective determination of perchlorate by a novel potentiometric sensor based on a synthesized complex of copper. Materials Science and Engineering C, 31(8), 1688–1691. https://doi.org/10.1016/j.msec.2011.07.017 - DOIspa
dcterms.bibliographicCitationGoordial, J., Lamarche-Gagnon, G., Lay, C.-Y., & Whyte, L. (2013). Left out in the cold: Life in cryoenvironments. Polyextremophiles, 27, 249–267. https://doi.org/10.1007/978-94-007-6488-0 - DOIspa
dcterms.bibliographicCitationHall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium, 41, 95–98.spa
dcterms.bibliographicCitationIsobe, T., Ogawa, S. P., Sugimoto, R., Ramu, K., Sudaryanto, A., Malarvannan, G., et al. (2013). Perchlorate contamination of groundwater from fireworks manufacturing area in South India. Environmental Monitoring and Assessment, 185(7), 5627–5637. https://doi.org/10.1007/s10661-012-2972-7 - DOIspa
dcterms.bibliographicCitationJackson, W. A., Böhlke, J. K., Gu, B., Hatzinger, P. B., & Sturchio, N. C. (2010). Isotopic composition and origin of indigenous natural perchlorate and co-occurring nitrate in the southwestern United States. Environmental Science & Technology, 44(13), 4869–4876. - DOIspa
dcterms.bibliographicCitationJackson, W. A., Davila, A. F., Estrada, N., Berry Lyons, W., Coates, J. D., & Priscu, J. C. (2012). Perchlorate and chlorate biogeochemistry in ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Geochimica Et Cosmochimica Acta, 98, 19–30. https://doi.org/10.1016/j.gca.2012.09.014 - DOIspa
dcterms.bibliographicCitationJiang, S., Cole-dai, J., An, C., Shi, G., Yu, J., & Sun, B. (2020). Spatial variability of perchlorate in East Antarctic surface snow: Implications for atmospheric production. Atmospheric Environment, 238(451), 117743. https://doi.org/10.1016/j.atmosenv.2020.117743 - DOIspa
dcterms.bibliographicCitationJiang, S., Cox, T. S., Cole-Dai, J., Peterson, K. M., & Shi, G. (2016). Trends of perchlorate in Antarctic snow: Implications for atmospheric production and preservation in snow. Geophysical Research Letters, 43(18), 9913–9919. https://doi.org/10.1002/2016GL070203 - DOIspa
dcterms.bibliographicCitationJiang, S., Li, Y.-S., & Sun, B. (2013). Determination of trace level of perchlorate in Antarctic snow and ice by ion chromatography coupled with tandem mass spectrometry using an automated sample on-line preconcentration method. Chinese Chemical Letters, 24(4), 311–314. https://doi.org/10.1016/j.cclet.2013.02.011 - DOIspa
dcterms.bibliographicCitationJiang, S., Shi, G., Cole-Dai, J., An, C., & Sun, B. (2021). Occurrence, latitudinal gradient and potential sources of perchlorate in the atmosphere across the hemispheres (31°N to 80°S). Environment International, 156, 106611. https://doi.org/10.1016/j.envint.2021.106611spa
dcterms.bibliographicCitationKokoulin, M. S., Kuzmich, A. S., Romanenko, L. A., Chikalovets, I. V., & Chernikov, O. V. (2020). Structure and in vitro bioactivity against cancer cells of the capsular polysaccharide from the marine bacterium Psychrobacter marincola. Marine Drugs. https://doi.org/10.3390/md18050268 - DOIspa
dcterms.bibliographicCitationKoneman, E. W., Allen, S., Janda, W., Schreckenberger, P., Winn, W., Woods, G., & Procop, G. (2006). Koneman’s color atlas and textbook of diagnostic microbiology (6th ed.).spa
dcterms.bibliographicCitationKounaves, S. P., Stroble, S. T., Anderson, R. M., Moore, Q., Catling, D. C., Douglas, S., et al. (2010). Discovery of natural perchlorate in the Antarctic dry valleys and its global implications. Environmental Science and Technology, 44(7), 2360–2364. https://doi.org/10.1021/es9033606 - DOIspa
dcterms.bibliographicCitationKucharzyk, K. H., Crawford, R. L., Paszczynski, A. J., & Hess, T. F. (2010). A method for assaying perchlorate concentration in microbial cultures using the fluorescent dye resazurin. Journal of Microbiological Methods, 81(1), 26–32. https://doi.org/10.1016/j.mimet.2010.01.019 - DOspa
dcterms.bibliographicCitationKucharzyk, K. H., Soule, T., & Hess, T. F. (2013). Maximizing microbial perchlorate degradation using a genetic algorithm: Consortia optimization. Biodegradation, 24(5), 583–596. https://doi.org/10.1007/s10532-012-9602-5 - DOIspa
dcterms.bibliographicCitationKuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). Ex-situ remediation technologies for environmental pollutants: A critical perspective Saranya. Reviews of Environmental Contamination and Toxicology. https://doi.org/10.1007/978-3-319-20013-2 - DOIspa
dcterms.bibliographicCitationLasek, R., Dziewit, L., Ciok, A., Decewicz, P., Romaniuk, K., Jedrys, Z., et al. (2017). Genome content, metabolic pathways and biotechnological potential of the psychrophilic Arctic bacterium Psychrobacter sp. DAB_AL43B, a source and a host of novel Psychrobacter-specific vectors. Journal of Biotechnology, 263, 64–74. https://doi.org/10.1016/j.jbiotec.2017.09.011 - DOIspa
dcterms.bibliographicCitationaye, V. J., & DasSarma, S. (2018). An Antarctic extreme halophile and its polyextremophilic enzyme: Effects of perchlorate salts. Astrobiology, 18(4), 412–418. https://doi.org/10.1089/ast.2017.1766 - DOIspa
dcterms.bibliographicCitationLiebensteiner, M. G., Oosterkamp, M. J., & Stams, A. J. M. (2015). Microbial respiration with chlorine oxyanions: Diversity and physiological and biochemical properties of chlorate- and perchlorate-reducing microorganisms. Annals of the New York Academy of Sciences, 1365(1), 59–72. https://doi.org/10.1111/nyas.12806 - DOIspa
dcterms.bibliographicCitationLogan, B. E., Wu, J., & Unz, R. F. (2001). Biological perchlorate reduction in high-salinity solutions. Water Research, 35(12), 3034–3038. https://doi.org/10.1016/S0043-1354(01)00013-6 - DOIspa
dcterms.bibliographicCitationLong, X., Tian, J., Liao, X., & Tian, Y. (2018). Adaptations of Bacillus shacheensis HNA-14 required for long-term survival under osmotic, 27525–27536. https://doi.org/10.1039/c8ra05472jspa
dcterms.bibliographicCitationLPSN. (n.d.). Genus: Psychrobacter. https://lpsn.dsmz.de/genus/psychrobacter . Accessed 6 October 2020spa
dcterms.bibliographicCitationLv, P. L., Shi, L. D., Dong, Q. Y., Rittmann, B., & Zhao, H. P. (2020). How nitrate affects perchlorate reduction in a methane-based biofilm batch reactor. Water Research, 171(3), 115397. https://doi.org/10.1016/j.watres.2019.115397 - DOIspa
dcterms.bibliographicCitationMalavenda, R., Rizzo, C., Michaud, L., Gerçe, B., Bruni, V., Syldatk, C., et al. (2015). Biosurfactant production by Arctic and Antarctic bacteria growing on hydrocarbons. Polar Biology, 38(10), 1565–1574. https://doi.org/10.1007/s00300-015-1717-9 - DOIspa
dcterms.bibliographicCitationMarina-Montes, C., Pérez-Arribas, L. V., Escudero, M., Anzano, J., & Cáceres, J. O. (2020). Heavy metal transport and evolution of atmospheric aerosols in the Antarctic region. Science of the Total Environment, 721, 137702. https://doi.org/10.1016/j.scitotenv.2020.137702 - DOIspa
dcterms.bibliographicCitationMartin, A., Hall, J., & Ryan, K. (2009). Low salinity and high-level UV-B radiation reduce single-cell activity in Antarctic sea ice bacteria. Applied and Environmental Microbiology, 75(23), 7570–7573. https://doi.org/10.1128/AEM.00829-09 - DOIspa
dcterms.bibliographicCitationMatsubara, T., Fujishima, K., Saltikov, C. W., Nakamura, S., & Rothschild, L. J. (2017). Earth analogues for past and future life on Mars: Isolation of perchlorate resistant halophiles from Big Soda Lake. International Journal of Astrobiology, 16(3), 218–228. https://doi.org/10.1017/S1473550416000458spa
dcterms.bibliographicCitationMuñoz-Villagrán, C. M., Mendez, K. N., Cornejo, F., Figueroa, M., Undabarrena, A., Morales, E. H., et al. (2018). Comparative genomic analysis of a new tellurite-resistant Psychrobacter strain isolated from the Antarctic Peninsula. PeerJ, 2018(2), 1–23. https://doi.org/10.7717/peerj.4402 - DOIspa
dcterms.bibliographicCitationNam, J. H., Ventura, J. R. S., Yeom, I. T., Lee, Y., & Jahng, D. (2016). A novel perchlorate- and nitrate-reducing bacterium, Azospira sp. PJM. Applied Microbiology and Biotechnology, 100(13), 6055–6068. https://doi.org/10.1007/s00253-016-7401-3 - DOIspa
dcterms.bibliographicCitationNor, S. J., Lee, S. H., Cho, K. S., Cha, D. K., Lee, K. I., & Ryu, H. W. (2011). Microbial treatment of high-strength perchlorate wastewater. Bioresource Technology, 102(2), 835–841. https://doi.org/10.1016/j.biortech.2010.08.127 - DOIspa
dcterms.bibliographicCitationNozawa-Inoue, M., Scow, K. M., & Rolston, D. E. (2005). Reduction of perchlorate and nitrate by microbial communities in vadose soil. Applied and Environmental Microbiology, 71(7), 3928–3934. https://doi.org/10.1128/AEM.71.7.3928-3934.2005 - DOIspa
dcterms.bibliographicCitationParker, D. R. (2009). Perchlorate in the environment: The emerging emphasis on natural occurrence. Environmental Chemistry, 6(1), 10–27. - DOIspa
dcterms.bibliographicCitationPeix, A., Ramírez-Bahena, M.-H., & Velázquez, E. (2018). The current status on the taxonomy of Pseudomonas revisited: An update. Infection, Genetics and Evolution, 57, 106–116. https://doi.org/10.1016/j.meegid.2017.10.026 - DOIspa
dcterms.bibliographicCitationPereira, J. L., Pereira, P., Padeiro, A., Gonçalves, F., Amaro, E., Leppe, M., et al. (2017). Environmental hazard assessment of contaminated soils in Antarctica: Using a structured tier 1 approach to inform decision-making. Science of the Total Environment, 574, 443–454. https://doi.org/10.1016/j.scitotenv.2016.09.091 - DOIspa
dcterms.bibliographicCitationPrabagaran, S. R., Manorama, R., Delille, D., & Shivaji, S. (2007). Predominance of Roseobacter, Sulfitobacter, Glaciecola and Psychrobacter in seawater collected off Ushuaia, Argentina, Sub-Antarctica. FEMS Microbiology Ecology, 59(2), 342–355. https://doi.org/10.1111/j.1574-6941.2006.00213.x - DOIspa
dcterms.bibliographicCitationReddy, G. S. N., Matsumoto, G. I., & Shivaji, S. (2003). Sporosarcina macmurdoensis sp. nov., from a cyanobacterial mat sample from a pond in the McMurdo Dry Valleys, Antarctica. International Journal of Systematic and Evolutionary Microbiology, 53(5), 1363–1367. https://doi.org/10.1099/ijs.0.02628-0spa
dcterms.bibliographicCitationRiddle, M., & Chapman, P. (2005). Toxic effects of contaminants in polar marine Environments. Environmental, Sciencie and Technology, 6–8.spa
dcterms.bibliographicCitationRose, N. L., Jones, V. J., Noon, P. E., Hodgson, D. A., Flower, R. J., & Appleby, P. G. (2012). Long-range transport of pollutants to the Falkland Islands and Antarctica: Evidence from lake sediment fly ash particle records.spa
dcterms.bibliographicCitationRubiano-Labrador, C., Díaz-Cárdenas, C., López, G., Gómez, J., & Baena, S. (2019). Colombian Andean thermal springs: Reservoir of thermophilic anaerobic bacteria producing hydrolytic enzymes. Extremophiles, 23(6), 793–808. https://doi.org/10.1007/s00792-019-01132-5 - DOIspa
dcterms.bibliographicCitationRyu, H. W., Nor, S. J., Moon, K. E., Cho, K.-S., Cha, D. K., & Rhee, K. I. (2011). Reduction of perchlorate by salt tolerant bacterial consortia. Bioresource Technology, 103(1), 279–285. https://doi.org/10.1007/s10529-009-9960-1 - DOIspa
dcterms.bibliographicCitationSantos, A. F., Pires, F., Jesus, H. E., Santos, A. L. S., Peixoto, R., Rosado, A. S., et al. (2015). Detection of proteases from Sporosarcina aquimarina and Algoriphagus antarcticus isolated from Antarctic soil. Anais Da Academia Brasileira De Ciências, 87(1), 109–119. https://doi.org/10.1590/0001-3765201520130519 - DOIspa
dcterms.bibliographicCitationSarria, M., Gonzales, J. M., Gerrity, D., & Batista, J. (2019). Biological reduction of nitrate and perchlorate in soil microcosms: An electron donor comparison of glycerol, emulsified oil, and mulch extract. Groundwater Monitoring and Remediation, 39(2), 32–42. https://doi.org/10.1111/gwmr.12315 - DOIspa
dcterms.bibliographicCitationSevda, S., Sreekishnan, T. R., Pous, N., Puig, S., & Pant, D. (2018). Bioelectroremediation of perchlorate and nitrate contaminated water. Bioresource Technology, 255, 331–339. https://doi.org/10.1016/j.biortech.2018.02.005spa
dcterms.bibliographicCitationSilva, T. R., Duarte, A. W. F., Passarini, M. R. Z., Ruiz, A. L. T. G., Franco, C. H., Moraes, C. B., et al. (2018). Bacteria from Antarctic environments: Diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities. Polar Biology, 41(7), 1505–1519. https://doi.org/10.1007/s00300-018-2300-y - DOIspa
dcterms.bibliographicCitationSingh, R. P., & Jha, P. N. (2016). A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant (Triticum aestivum). Frontiers in Plant Science, 7(DECEMBER2016), 1–18. https://doi.org/10.3389/fpls.2016.01890 - DOIspa
dcterms.bibliographicCitationSmith, D. J., Schuerger, A. C., Davidson, M. M., Pacala, S. W., Bakermans, C., & Onstott, T. C. (2009). Survivability of psychrobacter cryohalolentis K5 under simulated martian surface conditions. Astrobiology, 9(2), 221–228. https://doi.org/10.1089/ast.2007.0231 - DOspa
dcterms.bibliographicCitationSong, W., Gao, B., Zhang, X., Li, F., Xu, X., & Yue, Q. (2019). Biological reduction of perchlorate in domesticated activated sludge considering interaction effects of temperature, pH, electron donors and acceptors. Process Safety and Environmental Protection, 123, 169–178. https://doi.org/10.1016/j.psep.2019.01.009 - DOIspa
dcterms.bibliographicCitationUcar, D., Cokgor, E. U., Sahinkaya, E., Cetin, U., Bereketoglu, C., Calimlioglu, B., et al. (2017). Simultaneous nitrate and perchlorate removal from groundwater by heterotrophic-autotrophic sequential system. International Biodeterioration and Biodegradation, 116, 83–90. https://doi.org/10.1016/j.ibiod.2016.10.017 - DOIspa
dcterms.bibliographicCitationUcar, D., Cokgor, E. U., Sahinkaya, E., Cetin, U., Bereketoglu, C., Calimlioglu, B., et al. (2017). Simultaneous nitrate and perchlorate removal from groundwater by heterotrophic-autotrophic sequential system. International Biodeterioration and Biodegradation, 116, 83–90. https://doi.org/10.1016/j.ibiod.2016.10.017 - DOIspa
dcterms.bibliographicCitationVega, M., Nerenberg, R., & Vargas, I. T. (2018). Perchlorate contamination in Chile: Legacy, challenges, and potential solutions. Environmental Research, 164(March), 316–326. https://doi.org/10.1016/j.envres.2018.02.034 - DOIspa
dcterms.bibliographicCitationWan, D., Liu, Y., Wang, Y., Wang, H., & Xiao, S. (2017). Simultaneous bio-autotrophic reduction of perchlorate and nitrate in a sulfur packed bed reactor: Kinetics and bacterial community structure. Water Research, 108, 280–292. https://doi.org/10.1016/j.watres.2016.11.003 - DOIspa
dcterms.bibliographicCitationWang, J., Ding, J., Yu, D., Teng, D., He, B., Chen, X., et al. (2020). Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Science of the Total Environment, 707, 136092. https://doi.org/10.1016/j.scitotenv.2019.136092 - DOIspa
dcterms.bibliographicCitationXu, Q., Chu, Z., Gao, Y., Mei, Y., Yang, Z., Huang, Y., et al. (2020). Levels, sources and influence mechanisms of heavy metal contamination in topsoils in Mirror Peninsula, East Antarctica. Environmental Pollution. https://doi.org/10.1016/j.envpol.2019.113552 - DOspa
dcterms.bibliographicCitationYan, N., Marschner, P., Cao, W., Zuo, C., & Qin, W. (2015). Influence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research, 3(4), 316–323. https://doi.org/10.1016/j.iswcr.2015.11.003 - DOIspa
dcterms.bibliographicCitationYe, L., You, H., Yao, J., & Su, H. (2012). Water treatment technologies for perchlorate: A review. Desalination, 298, 1–12. https://doi.org/10.1016/j.desal.2012.05.006 - DOIspa
dcterms.bibliographicCitationYumoto, I., Hirota, K., Kimoto, H., Nodasaka, Y., Matsuyama, H., & Yoshimune, K. (2010). Psychrobacter piscatorii sp. nov., a psychrotolerant bacterium exhibiting high catalase activity isolated from an oxidative environment. International Journal of Systematic and Evolutionary Microbiology, 60(1), 205–208. https://doi.org/10.1099/ijs.0.010959-0spa
dcterms.bibliographicCitationZhang, D. C., Brouchkov, A., Griva, G., Schinner, F., & Margesin, R. (2013). Isolation and characterization of bacteria from ancient Siberian permafrost sediment. Biology, 2(1), 85–106. https://doi.org/10.3390/biology2010085 - DOIspa
dcterms.bibliographicCitationZhao, H. P., Van Ginkel, S., Tang, Y., Kang, D. W., Rittmann, B., & Krajmalnik-Brown, R. (2011). Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor. Environmental Science and Technology, 45(23), 10155–10162. https://doi.org/10.1021/es202569b - DOIspa
dcterms.bibliographicCitationZhu, Y., Gao, N., Chu, W., Wang, S., & Xu, J. (2016). Bacterial reduction of highly concentrated perchlorate: Kinetics and influence of co-existing electron acceptors, temperature, pH and electron donors. Chemosphere, 148, 188–194. - DOIspa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.1007/s10661-022-10328-w
dc.subject.keywordsExtremophilesspa
dc.subject.keywordsHalotolerant bacteriaspa
dc.subject.keywordsPsychrotolerant microorganismspa
dc.subject.keywordsPsychrophilic bacteriaspa
dc.subject.keywordsPerchlorate biodegradationspa
dc.subject.keywordsToxicityspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.