Mostrar el registro sencillo del ítem

dc.contributor.authorCaicedo-Torres, William
dc.contributor.authorGutierrez, Jairo
dc.date.accessioned2022-09-29T13:22:47Z
dc.date.available2022-09-29T13:22:47Z
dc.date.issued2020-05-20
dc.date.submitted2022-09-28
dc.identifier.citationCaicedo, William & Gutierrez, Jairo. (2020). ISeeU2: Visually Interpretable ICU mortality prediction using deep learning and free-text medical notes.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/11120
dc.description.abstractAccurate mortality prediction allows Intensive Care Units (ICUs) to adequately benchmark clinical practice and identify patients with unexpected outcomes. Traditionally, simple statistical models have been used to assess patient death risk, many times with sub-optimal performance. On the other hand deep learning holds promise to positively impact clinical practice by leveraging medical data to assist diagnosis and prediction, including mortality prediction. However, as the question of whether powerful Deep Learning models attend correlations backed by sound medical knowledge when generating predictions remains open, additional interpretability tools are needed to foster trust and encourage the use of AI by clinicians. In this work we show a Deep Learning model trained on MIMIC-III to predict mortality using raw nursing notes, together with visual explanations for word importance. Our model reaches a ROC of 0.8629 (±0.0058), outperforming the traditional SAPS-II score and providing enhanced interpretability when compared with similar Deep Learning approaches.spa
dc.format.extent32 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceScienceDirect - Elsevier - Expert Systems with Applications Vol. 202 (2022)spa
dc.titleISeeU2: Visually Interpretable ICU mortality prediction using deep learning and free-text medical notesspa
dcterms.bibliographicCitationG. Grasselli, A. Pesenti, M. Cecconi, Critical Care Utilization for the COVID-19 Outbreak in Lombardy, Italy, JAMA (2020). doi:10.1001/ jama.2020.4031.spa
dcterms.bibliographicCitationE. J. Emanuel, G. Persad, R. Upshur, B. Thome, M. Parker, A. Glick man, C. Zhang, C. Boyle, M. Smith, J. P. Phillips, Fair Allocatio Scarce Medical Resources in the Time of Covid-19, New England Journal of Medicine (2020). doi:10.1056/nejmsb2005114.spa
dcterms.bibliographicCitationA. G. Rapsang, D. C. Shyam, Scoring systems in the intensive care unit: A compendium, Indian Journal of Critical Care Medicine : Peer reviewed, Official Publication of Indian Society of Critical Care Medicine 18 (4) (2014) 220–228. doi:10.4103/0972-5229.130573. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4033855/spa
dcterms.bibliographicCitationS. Purushotham, C. Meng, Z. Che, Y. Liu, Benchmarking Deep Learning Models on Large Healthcare Datasets, Journal of Biomedical Informat ics (2018). doi:https://doi.org/10.1016/j.jbi.2018.04.007. URL http://www.sciencedirect.com/science/article/pii/ S1532046418300716spa
dcterms.bibliographicCitationW. Caicedo-Torres, J. Gutierrez, ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU, Journal of Biomedical Informatics 98 (2019) 103269. doi:10.1016/J.JBI.2019.103269. URL https://www.sciencedirect.com/science/article/pii/ S1532046419301881?dgcid=authorspa
dcterms.bibliographicCitationD. Shen, G. Wu, H.-I. Suk, Deep Learning in Medical Image Analysis, Annual Review of Biomedical Engineering 19 (1) (2017) null. doi: 10.1146/annurev-bioeng-071516-044442. URL http://dx.doi.org/10.1146/annurev-bioeng-071516-044442spa
dcterms.bibliographicCitationB. Shickel, P. J. Tighe, A. Bihorac, P. Rashidi, Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis., IEEE journal of biomedical and health infor matics 22 (5) (2018) 1589–1604. doi:10.1109/JBHI.2017.27spa
dcterms.bibliographicCitationP. Grnarova, F. Schmidt, S. L. Hyland, C. Eickhoff, Neural Document Embeddings for Intensive Care Patient Mortality Prediction, CoRR abs/1612.0 (2016).spa
dcterms.bibliographicCitationG. F. Cooper, C. F. Aliferis, R. Ambrosino, J. Aronis, B. G. Buchanan, R. Caruana, M. J. Fine, C. Glymour, G. Gordon, B. H. Hanusa, J. E. Janosky, C. Meek, T. Mitchell, T. Richardson, P. Spirtes, An evaluation of machine-learning methods for predicting pneumonia mortality, Ar tificial Intelligence in Medicine (1997). doi:10.1016/S0933-3657(96) 00367-3.spa
dcterms.bibliographicCitationA. E. W. Johnson, T. J. Pollard, L. Shen, L.-W. H. Lehman, M. Feng, M. Ghassemi, B. Moody, P. Szolovits, L. A. Celi, R. G. Mark, MIMIC III, a freely accessible critical care database., Sci Data 3 (2016) 160035. doi:10.1038/sdata.2016.35.spa
dcterms.bibliographicCitationY. Jo, L. Lee, S. Palaskar, Combining LSTM and Latent Topic Modeling for Mortality Prediction, ArXiv abs/1709.0 (2017).spa
dcterms.bibliographicCitationM. Sushil, S. Suster, K. Luyckx, W. Daelemans, Patient representation ˇ learning and interpretable evaluation using clinical notes, Journal of Biomedical Informatics (2018). arXiv:1807.01395, doi:10.1016/j. jbi.2018.06.016.spa
dcterms.bibliographicCitationY. Si, K. Roberts, Deep Patient Representation of Clinical Notes via Multi-Task Learning for Mortality Prediction., AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Trans lational Science (2019).spa
dcterms.bibliographicCitationM. Jin, M. T. Bahadori, A. Colak, P. Bhatia, B. Celikkaya, R. Bhakta, S. Senthivel, M. Khalilia, D. Navarro, B. Zhang, T. Doman, A. Ravi, M. Liger, T. Kass-hout, Improving Hospital Mortality Prediction with Medical Named Entities and Multimodal Learning (2018). arXiv:1811. 12276.spa
dcterms.bibliographicCitationY. LeCun, L. Bottou, Y. Bengio, Haffner, Gradient-Based Learning Ap plied to Document Recognition, in: Proceedings of the IEEE, Vol. 86, 1998, pp. 2278–2324.spa
dcterms.bibliographicCitationI. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016spa
dcterms.bibliographicCitationL. S. Shapley, A Value for n-Person Games, in: H. W. Kuhn, A. W. Tucker (Eds.), Contributions to the Theory of Games II, Princeton Uni versity Press, Princeton, 1953, pp. 307–317spa
dcterms.bibliographicCitationE. Strumbelj, I. Kononenko, S. Wrobel, An Efficient Explanation of Indi vidual Classifications using Game Theory, Journal of Machine Learning Research (2010). arXiv:1606.05386, doi:10.1145/2858036.2858529.spa
dcterms.bibliographicCitationA. Shrikumar, P. Greenside, A. Kundaje, Learning Important Features Through Propagating Activation Differences, CoRR abs/1704.0 (2017). arXiv:1704.02685. URL http://arxiv.org/abs/1704.02685spa
dcterms.bibliographicCitationS. M. Lundberg, S. I. Lee, A unified approach to interpreting model predictions, in: Advances in Neural Information Processing Systems, 2017. arXiv:1705.07874.spa
dcterms.bibliographicCitationK. Simonyan, A. Vedaldi, A. Zisserman, Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, CoRR abs/1312.6 (2013). URL http://arxiv.org/abs/1312.6034spa
dcterms.bibliographicCitationJ. T. Springenberg, A. Dosovitskiy, T. Brox, M. A. Riedmiller, Striving for Simplicity: The All Convolutional Net, CoRR abs/1412.6 (2014). arXiv:1412.6806. URL http://arxiv.org/abs/1412.6806spa
dcterms.bibliographicCitationM. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, L. Kaiser, M. Kudlur, J. Leven berg, D. Man, R. Monga, S. Moore, D. Murray, J. Shlens, B. Steiner, I. Sutskever, P. Tucker, V. Vanhoucke, V. Vasudevan, O. Vinyals, P. Warden, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, None 1 (212) (2015) 19. arXiv:1603.04467, doi:10.1038/nn.3331. URL http://download.tensorflow.org/paper/whitepaper2015. pdfspa
dcterms.bibliographicCitationD. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, ArXiv e-prints (dec 2014). arXiv:1412.6980spa
dcterms.bibliographicCitationE. Loper, S. Bird, NLTK, 2002. doi:10.3115/1118108.1118117spa
dcterms.bibliographicCitationJ. R. Gall, S. Lemeshow, F. Saulnier, A New Simplified Acute Physiol ogy Score (SAPS II) Based on a European/North American Multicenter Study, JAMA: The Journal of the American Medical Association (1993). arXiv:0402594v3, doi:10.1001/jama.1993.03510240069035.spa
dcterms.bibliographicCitationA. E. Johnson, D. J. Stone, L. A. Celi, T. J. Pollard, The MIMIC Code Repository: Enabling reproducibility in critical care research, Journal of the American Medical Informatics Association (2018). doi:10.1093/ jamia/ocx084.spa
dcterms.bibliographicCitationS. Hochreiter, J. Schmidhuber, Long Short-Term Memory, Neural Com put. 9 (8) (1997) 1735–1780. doi:10.1162/neco.1997.9.8.1735. URL http://dx.doi.org/10.1162/neco.1997.9.8.1735spa
dcterms.bibliographicCitationZ. C. Lipton, The Mythos of Model Interpretability, ICML Workshop on Human Interpretability in Machine Learning abs/1606.0 (2016) 96–100. arXiv:arXiv:1606.03490v1. URL http://arxiv.org/abs/1606.03490spa
dcterms.bibliographicCitationZ. Che, S. Purushotham, K. Cho, D. Sontag, Y. Liu, Recurrent Neu ral Networks for Multivariate Time Series with Missing Values, CoRR abs/1606.0 (2016). URL http://arxiv.org/abs/1606.01865spa
dcterms.bibliographicCitationZ. C. Lipton, D. Kale, R. Wetzel, Directly Modeling Missing Data in Sequences with RNNs: Improved Classification of Clinical Time Series, in: F. Doshi-Velez, J. Fackler, D. Kale, B. Wallace, J. Weins (Eds.), Proceedings of the 1st Machine Learning for Healthcare Conference, Vol. 56 of Proceedings of Machine Learning Research, PMLR, North eastern University, Boston, MA, USA, 2016, pp. 253–270. URL http://proceedings.mlr.press/v56/Lipton16.htmlspa
dcterms.bibliographicCitationVol. 56 of Proceedings of Machine Learning Research, PMLR, North eastern University, Boston, MA, USA, 2016, pp. 253–270. URL http://proceedings.mlr.press/v56/Lipton16.htmlspa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.eswa.2022.117190
dc.subject.keywordsDeep learningspa
dc.subject.keywordsMIMIC-IIIspa
dc.subject.keywordsClinical notesspa
dc.subject.keywordsShapley Valuespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.