Mostrar el registro sencillo del ítem

dc.contributor.authorGiraldo, Juan S
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorVergara, Pedro P.
dc.contributor.authorMilano, Federico
dc.date.accessioned2022-09-23T21:29:42Z
dc.date.available2022-09-23T21:29:42Z
dc.date.issued2022-07-02
dc.date.submitted2022-09-23
dc.identifier.citationGiraldo, Juan & Montoya Giraldo, Oscar & Vergara, Pedro P. & Milano, Federico. (2022). A fixed-point current injection power flow for electric distribution systems using Laurent series. Electric Power Systems Research. 211. 108326. 10.1016/j.epsr.2022.108326.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/11117
dc.description.abstracthis paper proposes a new power flow (PF) formulation for electrical distribution systems using the current injection method and applying the Laurent series expansion. Two solution algorithms are proposed: a Newtonlike iterative procedure and a fixed-point iteration based on the successive approximation method (SAM). The convergence analysis of the SAM is proven via the Banach fixed-point theorem, ensuring numerical stability, the uniqueness of the solution, and independence on the initializing point. Numerical results are obtained for both proposed algorithms and compared to well-known PF formulations considering their rate of convergence, computational time, and numerical stability. Tests are performed for different branch 𝑅����∕𝑋���� ratios, loading conditions, and initialization points in balanced and unbalanced networks with radial and weakly-meshed topologies. Results show that the SAM is computationally more efficient than the compared PFs, being more than ten times faster than the backward–forward sweep algorithm.spa
dc.format.extent8 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceElsevier - Electric Power Systems Research Vol. 211 (2022)spa
dc.titleA fixed-point current injection power flow for electric distribution systems using Laurent seriesspa
dcterms.bibliographicCitationBompard E., Carpaneto E., Chicco G., Napoli R. Convergence of the backward/forward sweep method for the load-flow analysis of radial distribution systems Int. J. Electr. Power Energy Syst., 22 (7) (2000), pp. 521-530spa
dcterms.bibliographicCitationMilano F. Continuous Newton’s method for power flow analysis IEEE Trans. Power Syst., 24 (1) (2009), pp. 50-57spa
dcterms.bibliographicCitationMonticelli A., García A., Saavedra O.R. Fast decoupled load flow: hypothesis, derivations, and testing IEEE Trans. Power Syst., 5 (4) (1990), pp. 1425-1431spa
dcterms.bibliographicCitationCheng C., Shirmohammadi D. A three-phase power flow method for real-time distribution system analysis IEEE Trans. Power Syst., 10 (2) (1995), pp. 671-679spa
dcterms.bibliographicCitationGarcía P.A., Pereira J.L.R., Carneiro S., Da Costa V.M., Martins N. Three-phase power flow calculations using the current injection method IEEE Trans. Power Syst., 15 (2) (2000), pp. 508-514spa
dcterms.bibliographicCitationTostado-Véliz M., Kamel S., Jurado F. Power flow solution of ill-conditioned systems using current injection formulation: Analysis and a novel method Int. J. Electr. Power Energy Syst., 127 (2021), Article 106669spa
dcterms.bibliographicCitationMilano F. Implicit continuous Newton method for power flow analysis IEEE Trans. Power Syst., 34 (4) (2019), pp. 3309-3311spa
dcterms.bibliographicCitationBraz L., Castro C., Murati C. A critical evaluation of step size optimization based load flow methods IEEE Trans. Power Syst., 15 (1) (2000), pp. 202-207spa
dcterms.bibliographicCitationLagacé P.-J., Vuong M.-H., Kamwa I. Improving power flow convergence by Newton raphson with a levenberg-marquardt method 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, IEEE (2008), pp. 1-6spa
dcterms.bibliographicCitationTostado-Véliz M., Kamel S., Jurado F. Comparison of various robust and efficient load-flow techniques based on Runge–Kutta formulas Electr. Power Syst. Res., 174 (2019), Article 105881spa
dcterms.bibliographicCitationKorn G.A., Korn T.M. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review Dover Publications (2000), pp. 187-220spa
dcterms.bibliographicCitationGarces A. A linear three-phase load flow for power distribution systems IEEE Trans. Power Syst., 31 (1) (2016), pp. 827-828spa
dcterms.bibliographicCitationO.D. Montoya, L.E. Rueda, W. Gil-González, A. Molina-Cabrera, H.R. Chamorro, M. Soleimani, On the power flow solution in AC distribution networks using the Laurent’s series expansion, in: 2021 IEEE Texas Power and Energy Conference, TPEC, 2-5 Feb. 2021, College Station, TX, USA, 2021.spa
dcterms.bibliographicCitationBolognani S., Zampieri S. On the existence and linear approximation of the power flow solution in power distribution networks IEEE Trans. Power Syst., 31 (1) (2016), pp. 163-172spa
dcterms.bibliographicCitationBazrafshan M., Gatsis N. Convergence of the Z-Bus method for three-phase distribution load-flow with ZIP loads IEEE Trans. Power Syst., 33 (1) (2018), pp. 153-165spa
dcterms.bibliographicCitationBernstein A., Wang C., Dall’Anese E., Le Boudec J.-Y., Zhao C. Load flow in multiphase distribution networks: Existence, uniqueness, non-singularity and linear models IEEE Trans. Power Syst., 33 (6) (2018), pp. 5832-5843spa
dcterms.bibliographicCitationMontoya O.D., Gil-González W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems Electr. Power Syst. Res., 187 (2020), Article 106454spa
dcterms.bibliographicCitationGuddanti K.P., Weng Y., Zhang B. A matrix-inversion-free fixed-point method for distributed power flow analysis IEEE Trans. Power Syst., 37 (1) (2022), pp. 653-665spa
dcterms.bibliographicCitationMontoya O.D., Giraldo J.S., Grisales-Noreña L.F., Chamorro H.R., Alvarado-Barrios L. Accurate and efficient derivative-free three-phase power flow method for unbalanced distribution networks Computation, 9 (6) (2021), p. 61spa
dcterms.bibliographicCitationLin W.-M., Su Y.-S., Teng J.-H., Chen S.-J. A new building algorithm for Z-matrix PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings, Vol. 2, Cat. No. 00EX409, IEEE (2000), pp. 1041-1046spa
dcterms.bibliographicCitationGiraldo J.S. Current injection method using laurent series expansion (2022) https://github.com/juan-giraldo-ch/CIMLaurent.git.spa
dcterms.bibliographicCitationKettner A.M., Paolone M. On the properties of the compound nodal admittance matrix of polyphase power systems IEEE Trans. Power Syst., 34 (1) (2019), pp. 444-453spa
dcterms.bibliographicCitationJ.S. Giraldo, J.A. Castrillón, C.A. Castro, Robust and efficient voltage stability margin computation using synchrophasors, in: 2015 IEEE Power Energy Society General Meeting, 2015, pp. 1–5.spa
dcterms.bibliographicCitationWang C., Bernstein A., Le Boudec J.-Y., Paolone M. Explicit conditions on existence and uniqueness of load-flow solutions in distribution networks IEEE Trans. Smart Grid, 9 (2) (2018), pp. 953-962spa
dcterms.bibliographicCitationLaPSEE Power System Test Cases Repository UNESP C. Downloads / sistemas testes (2020)spa
dcterms.bibliographicCitationMantovani J.R., Casari F., Romero R.A. Reconfiguração de sistemas de distribuição radiais utilizando o critério de queda de tensão Controle Automação (2000), pp. 150-159spa
dcterms.bibliographicCitationF. Milano, A Python-based software tool for power system analysis, in: 2013 IEEE Power Energy Society General Meeting, 2013, pp. 1–5.spa
dcterms.bibliographicCitationArif A., Wang Z., Wang J., Mather B., Bashualdo H., Zhao D. Load modeling—A review IEEE Trans. Smart Grid, 9 (6) (2018), pp. 5986-5999spa
dcterms.bibliographicCitationElecrtrical Power System Research Institute A. Distributed PV monitoring and feeder analysis - Feeder K1 (2021) URL https://dpv.epri.com/feeder_k.htmlspa
dcterms.bibliographicCitationPOWER D. Polish system during morning peak conditions in summer of 2008 (2021) URL https://bit.ly/3D95QH9spa
dcterms.bibliographicCitationM. Salazar, J.S. Giraldo, P.P. Vergara, P. Nguyen, A. van der Molen, H. Slootweg, Community Energy Storage Operation via Reinforcement Learning with Eligibility Traces, in: 2022 Power Systems Computation Conference, PSCC, 2022, in press.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.epsr.2022.108326
dc.subject.keywordsCurrent injection power flowspa
dc.subject.keywordsLaurent seriesspa
dc.subject.keywordsFixed-point iterationspa
dc.subject.keywordsThree-phase systemsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.