Mostrar el registro sencillo del ítem
A fixed-point current injection power flow for electric distribution systems using Laurent series
dc.contributor.author | Giraldo, Juan S | |
dc.contributor.author | Montoya, Oscar Danilo | |
dc.contributor.author | Vergara, Pedro P. | |
dc.contributor.author | Milano, Federico | |
dc.date.accessioned | 2022-09-23T21:29:42Z | |
dc.date.available | 2022-09-23T21:29:42Z | |
dc.date.issued | 2022-07-02 | |
dc.date.submitted | 2022-09-23 | |
dc.identifier.citation | Giraldo, Juan & Montoya Giraldo, Oscar & Vergara, Pedro P. & Milano, Federico. (2022). A fixed-point current injection power flow for electric distribution systems using Laurent series. Electric Power Systems Research. 211. 108326. 10.1016/j.epsr.2022.108326. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/11117 | |
dc.description.abstract | his paper proposes a new power flow (PF) formulation for electrical distribution systems using the current injection method and applying the Laurent series expansion. Two solution algorithms are proposed: a Newtonlike iterative procedure and a fixed-point iteration based on the successive approximation method (SAM). The convergence analysis of the SAM is proven via the Banach fixed-point theorem, ensuring numerical stability, the uniqueness of the solution, and independence on the initializing point. Numerical results are obtained for both proposed algorithms and compared to well-known PF formulations considering their rate of convergence, computational time, and numerical stability. Tests are performed for different branch 𝑅����∕𝑋���� ratios, loading conditions, and initialization points in balanced and unbalanced networks with radial and weakly-meshed topologies. Results show that the SAM is computationally more efficient than the compared PFs, being more than ten times faster than the backward–forward sweep algorithm. | spa |
dc.format.extent | 8 Páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Elsevier - Electric Power Systems Research Vol. 211 (2022) | spa |
dc.title | A fixed-point current injection power flow for electric distribution systems using Laurent series | spa |
dcterms.bibliographicCitation | Bompard E., Carpaneto E., Chicco G., Napoli R. Convergence of the backward/forward sweep method for the load-flow analysis of radial distribution systems Int. J. Electr. Power Energy Syst., 22 (7) (2000), pp. 521-530 | spa |
dcterms.bibliographicCitation | Milano F. Continuous Newton’s method for power flow analysis IEEE Trans. Power Syst., 24 (1) (2009), pp. 50-57 | spa |
dcterms.bibliographicCitation | Monticelli A., García A., Saavedra O.R. Fast decoupled load flow: hypothesis, derivations, and testing IEEE Trans. Power Syst., 5 (4) (1990), pp. 1425-1431 | spa |
dcterms.bibliographicCitation | Cheng C., Shirmohammadi D. A three-phase power flow method for real-time distribution system analysis IEEE Trans. Power Syst., 10 (2) (1995), pp. 671-679 | spa |
dcterms.bibliographicCitation | García P.A., Pereira J.L.R., Carneiro S., Da Costa V.M., Martins N. Three-phase power flow calculations using the current injection method IEEE Trans. Power Syst., 15 (2) (2000), pp. 508-514 | spa |
dcterms.bibliographicCitation | Tostado-Véliz M., Kamel S., Jurado F. Power flow solution of ill-conditioned systems using current injection formulation: Analysis and a novel method Int. J. Electr. Power Energy Syst., 127 (2021), Article 106669 | spa |
dcterms.bibliographicCitation | Milano F. Implicit continuous Newton method for power flow analysis IEEE Trans. Power Syst., 34 (4) (2019), pp. 3309-3311 | spa |
dcterms.bibliographicCitation | Braz L., Castro C., Murati C. A critical evaluation of step size optimization based load flow methods IEEE Trans. Power Syst., 15 (1) (2000), pp. 202-207 | spa |
dcterms.bibliographicCitation | Lagacé P.-J., Vuong M.-H., Kamwa I. Improving power flow convergence by Newton raphson with a levenberg-marquardt method 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, IEEE (2008), pp. 1-6 | spa |
dcterms.bibliographicCitation | Tostado-Véliz M., Kamel S., Jurado F. Comparison of various robust and efficient load-flow techniques based on Runge–Kutta formulas Electr. Power Syst. Res., 174 (2019), Article 105881 | spa |
dcterms.bibliographicCitation | Korn G.A., Korn T.M. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review Dover Publications (2000), pp. 187-220 | spa |
dcterms.bibliographicCitation | Garces A. A linear three-phase load flow for power distribution systems IEEE Trans. Power Syst., 31 (1) (2016), pp. 827-828 | spa |
dcterms.bibliographicCitation | O.D. Montoya, L.E. Rueda, W. Gil-González, A. Molina-Cabrera, H.R. Chamorro, M. Soleimani, On the power flow solution in AC distribution networks using the Laurent’s series expansion, in: 2021 IEEE Texas Power and Energy Conference, TPEC, 2-5 Feb. 2021, College Station, TX, USA, 2021. | spa |
dcterms.bibliographicCitation | Bolognani S., Zampieri S. On the existence and linear approximation of the power flow solution in power distribution networks IEEE Trans. Power Syst., 31 (1) (2016), pp. 163-172 | spa |
dcterms.bibliographicCitation | Bazrafshan M., Gatsis N. Convergence of the Z-Bus method for three-phase distribution load-flow with ZIP loads IEEE Trans. Power Syst., 33 (1) (2018), pp. 153-165 | spa |
dcterms.bibliographicCitation | Bernstein A., Wang C., Dall’Anese E., Le Boudec J.-Y., Zhao C. Load flow in multiphase distribution networks: Existence, uniqueness, non-singularity and linear models IEEE Trans. Power Syst., 33 (6) (2018), pp. 5832-5843 | spa |
dcterms.bibliographicCitation | Montoya O.D., Gil-González W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems Electr. Power Syst. Res., 187 (2020), Article 106454 | spa |
dcterms.bibliographicCitation | Guddanti K.P., Weng Y., Zhang B. A matrix-inversion-free fixed-point method for distributed power flow analysis IEEE Trans. Power Syst., 37 (1) (2022), pp. 653-665 | spa |
dcterms.bibliographicCitation | Montoya O.D., Giraldo J.S., Grisales-Noreña L.F., Chamorro H.R., Alvarado-Barrios L. Accurate and efficient derivative-free three-phase power flow method for unbalanced distribution networks Computation, 9 (6) (2021), p. 61 | spa |
dcterms.bibliographicCitation | Lin W.-M., Su Y.-S., Teng J.-H., Chen S.-J. A new building algorithm for Z-matrix PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings, Vol. 2, Cat. No. 00EX409, IEEE (2000), pp. 1041-1046 | spa |
dcterms.bibliographicCitation | Giraldo J.S. Current injection method using laurent series expansion (2022) https://github.com/juan-giraldo-ch/CIMLaurent.git. | spa |
dcterms.bibliographicCitation | Kettner A.M., Paolone M. On the properties of the compound nodal admittance matrix of polyphase power systems IEEE Trans. Power Syst., 34 (1) (2019), pp. 444-453 | spa |
dcterms.bibliographicCitation | J.S. Giraldo, J.A. Castrillón, C.A. Castro, Robust and efficient voltage stability margin computation using synchrophasors, in: 2015 IEEE Power Energy Society General Meeting, 2015, pp. 1–5. | spa |
dcterms.bibliographicCitation | Wang C., Bernstein A., Le Boudec J.-Y., Paolone M. Explicit conditions on existence and uniqueness of load-flow solutions in distribution networks IEEE Trans. Smart Grid, 9 (2) (2018), pp. 953-962 | spa |
dcterms.bibliographicCitation | LaPSEE Power System Test Cases Repository UNESP C. Downloads / sistemas testes (2020) | spa |
dcterms.bibliographicCitation | Mantovani J.R., Casari F., Romero R.A. Reconfiguração de sistemas de distribuição radiais utilizando o critério de queda de tensão Controle Automação (2000), pp. 150-159 | spa |
dcterms.bibliographicCitation | F. Milano, A Python-based software tool for power system analysis, in: 2013 IEEE Power Energy Society General Meeting, 2013, pp. 1–5. | spa |
dcterms.bibliographicCitation | Arif A., Wang Z., Wang J., Mather B., Bashualdo H., Zhao D. Load modeling—A review IEEE Trans. Smart Grid, 9 (6) (2018), pp. 5986-5999 | spa |
dcterms.bibliographicCitation | Elecrtrical Power System Research Institute A. Distributed PV monitoring and feeder analysis - Feeder K1 (2021) URL https://dpv.epri.com/feeder_k.html | spa |
dcterms.bibliographicCitation | POWER D. Polish system during morning peak conditions in summer of 2008 (2021) URL https://bit.ly/3D95QH9 | spa |
dcterms.bibliographicCitation | M. Salazar, J.S. Giraldo, P.P. Vergara, P. Nguyen, A. van der Molen, H. Slootweg, Community Energy Storage Operation via Reinforcement Learning with Eligibility Traces, in: 2022 Power Systems Computation Conference, PSCC, 2022, in press. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.doi | https://doi.org/10.1016/j.epsr.2022.108326 | |
dc.subject.keywords | Current injection power flow | spa |
dc.subject.keywords | Laurent series | spa |
dc.subject.keywords | Fixed-point iteration | spa |
dc.subject.keywords | Three-phase systems | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.