Mostrar el registro sencillo del ítem
A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals
dc.contributor.author | Montoya, Oscar Danilo | |
dc.contributor.author | Gil-González, Walter | |
dc.contributor.author | Garcés, Alejandro | |
dc.date.accessioned | 2022-09-23T21:28:10Z | |
dc.date.available | 2022-09-23T21:28:10Z | |
dc.date.issued | 2022-07-02 | |
dc.date.submitted | 2022-09-23 | |
dc.identifier.citation | Montoya Giraldo, Oscar & Gil González, Walter & Garces, Alejandro. (2022). A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals. Electric Power Systems Research. 211. 108264. 10.1016/j.epsr.2022.108264. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/11116 | |
dc.description.abstract | This paper deals with the power flow problem in bipolar direct current distribution networks with unbalanced constant power loads. The effect of the neutral wire is considered in two prominent cases: (i) when the system is solidly grounded at each load point and (ii) when the neutral terminal is only grounded at the substation bus. The problem is solved using the successive approximation power flow method. Numerical results in two test feeders composed of 4 and 25 nodes demonstrate that the successive approximation power flow approach is adequate to solve the problem. It is also demonstrated that it is equivalent to the backward/forward power flow in matrix form. The main advantage of both power flow approaches is that they can work with radial and meshed distribution networks. Additionally, they do not require inverting matrices at each iteration, making them efficient in terms of computational processing times requirements. All the simulations are carried out in the MATLAB programming environment. | spa |
dc.format.extent | 10 Páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Elsevier - Electric Power Systems Research Vol. 211 (2022) | spa |
dc.title | A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals | spa |
dcterms.bibliographicCitation | Garces A., Azhmyakov V. Application of the nested convex programming to the optimal power flow in MT-HVDC grids IFAC-PapersOnLine, 53 (2) (2020), pp. 13173-13177, 10.1016/j.ifacol.2020.12.128 | spa |
dcterms.bibliographicCitation | Montoya O.D., Gil-González W. Stationary-state analysis of low-voltage DC grids Modeling, Operation, and Analysis of DC Grids, Elsevier (2021), pp. 195-213 | spa |
dcterms.bibliographicCitation | Agarwal S., Panigrahi C.K., Sahoo A., Mishra S. A novel study on bipolar high voltage direct current transmission lines protection schemes Int. J. Electr. Comput. Eng. (IJECE), 8 (4) (2018), p. 1977, 10.11591/ijece.v8i4.pp1977-1984 | spa |
dcterms.bibliographicCitation | Garces A., Montoya O.D., Gil-Gonzalez W. Power flow in bipolar DC distribution networks considering current limits IEEE Trans. Power Syst. (2022), pp. 1-4, 10.1109/tpwrs.2022.3181851 | spa |
dcterms.bibliographicCitation | Mackay L., Blij N.H.v.d., Ramirez-Elizondo L., Bauer P. Toward the universal DC distribution system Electr. Power Compon. Syst., 45 (10) (2017), pp. 1032-1042 | spa |
dcterms.bibliographicCitation | Grisales-Noreña L.F., Ramos-Paja C.A., Gonzalez-Montoya D., Alcalá G., Hernandez-Escobedo Q. Energy management in PV based microgrids designed for the universidad nacional de Colombia Sustainability, 12 (3) (2020), p. 1219, 10.3390/su12031219 | spa |
dcterms.bibliographicCitation | Zhu H., Zhu M., Zhang J., Cai X., Dai N. Topology and operation mechanism of monopolarto-bipolar DC-DC converter interface for DC grid 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), IEEE (2016), 10.1109/ipemc.2016.7512892 | spa |
dcterms.bibliographicCitation | Mackay L., Hailu T.G., Mouli G.C., Ramírez-Elizondo L., Ferreira J., Bauer P. From dc nano-and microgrids towards the universal dc distribution system-a plea to think further into the future 2015 IEEE Power & Energy Society General Meeting, IEEE (2015), pp. 1-5 | spa |
dcterms.bibliographicCitation | Rivera S., Lizana R., Kouro S., Dragičević T., Wu B. Bipolar dc power conversion: State-of-the-art and emerging technologies IEEE J. Emerg. Sel. Top. Power Electron., 9 (2) (2020), pp. 1192-1204 | spa |
dcterms.bibliographicCitation | Medina-Quesada A., Montoya O.D., Hernández J.C. Derivative-free power flow solution for bipolar DC networks with multiple constant power terminals Sensors, 22 (8) (2022), pp. 1-13, 10.3390/s22082914 | spa |
dcterms.bibliographicCitation | Garces A. Modeling, Operation, and Analysis of DC Grids: From High Power DC Transmission to DC Microgrids Elsevier (2021) | spa |
dcterms.bibliographicCitation | Chew B.S.H., Xu Y., Wu Q. Voltage balancing for bipolar DC distribution grids: A power flow based binary integer multi-objective optimization approach IEEE Trans. Power Syst., 34 (1) (2018), pp. 28-39 | spa |
dcterms.bibliographicCitation | Mackay L., Guarnotta R., Dimou A., Morales-Espana G., Ramirez-Elizondo L., Bauer P. Optimal power flow for unbalanced bipolar DC distribution grids IEEE Access, 6 (2018), pp. 5199-5207, 10.1109/access.2018.2789522 | spa |
dcterms.bibliographicCitation | Beerten J., Cole S., Belmans R. A sequential AC/DC power flow algorithm for networks containing multi-terminal VSC HVDC systems IEEE PES General Meeting, IEEE (2010), pp. 1-7 | spa |
dcterms.bibliographicCitation | Wiget R., Andersson G. Optimal power flow for combined AC and multi-terminal HVDC grids based on VSC converters 2012 IEEE Power and Energy Society General Meeting, IEEE (2012), pp. 1-8 | spa |
dcterms.bibliographicCitation | Rimez J., Belmans R. A combined AC/DC optimal power flow algorithm for meshed AC and DC networks linked by VSC converters Int. Trans. Electr. Energy Syst., 25 (10) (2015), pp. 2024-2035 | spa |
dcterms.bibliographicCitation | Kim J., Cho J., Kim H., Cho Y., Lee H. Power flow calculation method of DC distribution network for actual power system KEPCO J. Electr. Power Energy, 6 (4) (2020), pp. 419-425, | spa |
dcterms.bibliographicCitation | Lee J.-O., Kim Y.-S., Moon S.-I. Current injection power flow analysis and optimal generation dispatch for bipolar DC microgrids IEEE Trans. Smart Grid, 12 (3) (2021), pp. 1918-1928, | spa |
dcterms.bibliographicCitation | Montoya O.D., Gil-González W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems Electr. Power Syst. Res., 187 (2020), Article 106454, 10.1016/j.epsr.2020.106454 | spa |
dcterms.bibliographicCitation | Herrera-Briñez M.C., Montoya O.D., Alvarado-Barrios L., Chamorro H.R. The equivalence between successive approximations and matricial load flow formulations Appl. Sci., 11 (7) (2021), p. 2905, 10.3390/app11072905 | spa |
dcterms.bibliographicCitation | Ouali S., Cherkaoui A. An improved backward/forward sweep power flow method based on a new network information organization for radial distribution systems J. Electr. Comput. Eng., 2020 (2020), pp. 1-11, 10.1155/2020/5643410 | spa |
dcterms.bibliographicCitation | Lee J.-O., Kim Y.-S., Jeon J.-H. Generic power flow algorithm for bipolar DC microgrids based on Newton–Raphson method Int. J. Electr. Power Energy Syst., 142 (2022), Article 108357, 10.1016/j.ijepes.2022.108357 | spa |
dcterms.bibliographicCitation | Garces A. Uniqueness of the power flow solutions in low voltage direct current grids Electr. Power Syst. Res., 151 (2017), pp. 149-153, 10.1016/j.epsr.2017.05.031 | spa |
dcterms.bibliographicCitation | Montoya O.D., Giraldo J.S., Grisales-Noreña L.F., Chamorro H.R., Alvarado-Barrios L. Accurate and efficient derivative-free three-phase power flow method for unbalanced distribution networks Computation, 9 (6) (2021), p. 61, 10.3390/computation9060061 | spa |
dcterms.bibliographicCitation | Loomis L.H., Sternberg S. Advanced Calculus World Scientific (2014) | spa |
dcterms.bibliographicCitation | Shivakumar P.N., Williams J.J., Ye Q., Marinov C.A. On two-sided bounds related to weakly diagonally dominant M-matrices with application to digital circuit dynamics SIAM J. Matrix Anal. Appl., 17 (2) (1996), pp. 298-312, 10.1137/S0895479894276370 | spa |
dcterms.bibliographicCitation | Shen T., Li Y., Xiang J. A graph-based power flow method for balanced distribution systems Energies, 11 (3) (2018), p. 511, 10.3390/en11030511 | spa |
dcterms.bibliographicCitation | Marini A., Mortazavi S., Piegari L., Ghazizadeh M.-S. An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations Electr. Power Syst. Res., 170 (2019), pp. 229-243, 10.1016/j.epsr.2018.12.026 | spa |
dcterms.bibliographicCitation | Garces A. On the convergence of Newton’s method in power flow studies for DC microgrids IEEE Trans. Power Syst., 33 (5) (2018), pp. 5770-5777, 10.1109/tpwrs.2018.2820430 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.doi | https://doi.org/10.1016/j.epsr.2022.108264 | |
dc.subject.keywords | Bipolar DC networks | spa |
dc.subject.keywords | Asymmetric constant power loads | spa |
dc.subject.keywords | Successive approximations power flow method | spa |
dc.subject.keywords | Effect of the neutral conductor | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.