Mostrar el registro sencillo del ítem

dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorGil-González, Walter
dc.contributor.authorGarcés, Alejandro
dc.date.accessioned2022-09-23T21:28:10Z
dc.date.available2022-09-23T21:28:10Z
dc.date.issued2022-07-02
dc.date.submitted2022-09-23
dc.identifier.citationMontoya Giraldo, Oscar & Gil González, Walter & Garces, Alejandro. (2022). A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals. Electric Power Systems Research. 211. 108264. 10.1016/j.epsr.2022.108264.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/11116
dc.description.abstractThis paper deals with the power flow problem in bipolar direct current distribution networks with unbalanced constant power loads. The effect of the neutral wire is considered in two prominent cases: (i) when the system is solidly grounded at each load point and (ii) when the neutral terminal is only grounded at the substation bus. The problem is solved using the successive approximation power flow method. Numerical results in two test feeders composed of 4 and 25 nodes demonstrate that the successive approximation power flow approach is adequate to solve the problem. It is also demonstrated that it is equivalent to the backward/forward power flow in matrix form. The main advantage of both power flow approaches is that they can work with radial and meshed distribution networks. Additionally, they do not require inverting matrices at each iteration, making them efficient in terms of computational processing times requirements. All the simulations are carried out in the MATLAB programming environment.spa
dc.format.extent10 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceElsevier - Electric Power Systems Research Vol. 211 (2022)spa
dc.titleA successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminalsspa
dcterms.bibliographicCitationGarces A., Azhmyakov V. Application of the nested convex programming to the optimal power flow in MT-HVDC grids IFAC-PapersOnLine, 53 (2) (2020), pp. 13173-13177, 10.1016/j.ifacol.2020.12.128spa
dcterms.bibliographicCitationMontoya O.D., Gil-González W. Stationary-state analysis of low-voltage DC grids Modeling, Operation, and Analysis of DC Grids, Elsevier (2021), pp. 195-213spa
dcterms.bibliographicCitationAgarwal S., Panigrahi C.K., Sahoo A., Mishra S. A novel study on bipolar high voltage direct current transmission lines protection schemes Int. J. Electr. Comput. Eng. (IJECE), 8 (4) (2018), p. 1977, 10.11591/ijece.v8i4.pp1977-1984spa
dcterms.bibliographicCitationGarces A., Montoya O.D., Gil-Gonzalez W. Power flow in bipolar DC distribution networks considering current limits IEEE Trans. Power Syst. (2022), pp. 1-4, 10.1109/tpwrs.2022.3181851spa
dcterms.bibliographicCitationMackay L., Blij N.H.v.d., Ramirez-Elizondo L., Bauer P. Toward the universal DC distribution system Electr. Power Compon. Syst., 45 (10) (2017), pp. 1032-1042spa
dcterms.bibliographicCitationGrisales-Noreña L.F., Ramos-Paja C.A., Gonzalez-Montoya D., Alcalá G., Hernandez-Escobedo Q. Energy management in PV based microgrids designed for the universidad nacional de Colombia Sustainability, 12 (3) (2020), p. 1219, 10.3390/su12031219spa
dcterms.bibliographicCitationZhu H., Zhu M., Zhang J., Cai X., Dai N. Topology and operation mechanism of monopolarto-bipolar DC-DC converter interface for DC grid 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), IEEE (2016), 10.1109/ipemc.2016.7512892spa
dcterms.bibliographicCitationMackay L., Hailu T.G., Mouli G.C., Ramírez-Elizondo L., Ferreira J., Bauer P. From dc nano-and microgrids towards the universal dc distribution system-a plea to think further into the future 2015 IEEE Power & Energy Society General Meeting, IEEE (2015), pp. 1-5spa
dcterms.bibliographicCitationRivera S., Lizana R., Kouro S., Dragičević T., Wu B. Bipolar dc power conversion: State-of-the-art and emerging technologies IEEE J. Emerg. Sel. Top. Power Electron., 9 (2) (2020), pp. 1192-1204spa
dcterms.bibliographicCitationMedina-Quesada A., Montoya O.D., Hernández J.C. Derivative-free power flow solution for bipolar DC networks with multiple constant power terminals Sensors, 22 (8) (2022), pp. 1-13, 10.3390/s22082914spa
dcterms.bibliographicCitationGarces A. Modeling, Operation, and Analysis of DC Grids: From High Power DC Transmission to DC Microgrids Elsevier (2021)spa
dcterms.bibliographicCitationChew B.S.H., Xu Y., Wu Q. Voltage balancing for bipolar DC distribution grids: A power flow based binary integer multi-objective optimization approach IEEE Trans. Power Syst., 34 (1) (2018), pp. 28-39spa
dcterms.bibliographicCitationMackay L., Guarnotta R., Dimou A., Morales-Espana G., Ramirez-Elizondo L., Bauer P. Optimal power flow for unbalanced bipolar DC distribution grids IEEE Access, 6 (2018), pp. 5199-5207, 10.1109/access.2018.2789522spa
dcterms.bibliographicCitationBeerten J., Cole S., Belmans R. A sequential AC/DC power flow algorithm for networks containing multi-terminal VSC HVDC systems IEEE PES General Meeting, IEEE (2010), pp. 1-7spa
dcterms.bibliographicCitationWiget R., Andersson G. Optimal power flow for combined AC and multi-terminal HVDC grids based on VSC converters 2012 IEEE Power and Energy Society General Meeting, IEEE (2012), pp. 1-8spa
dcterms.bibliographicCitationRimez J., Belmans R. A combined AC/DC optimal power flow algorithm for meshed AC and DC networks linked by VSC converters Int. Trans. Electr. Energy Syst., 25 (10) (2015), pp. 2024-2035spa
dcterms.bibliographicCitationKim J., Cho J., Kim H., Cho Y., Lee H. Power flow calculation method of DC distribution network for actual power system KEPCO J. Electr. Power Energy, 6 (4) (2020), pp. 419-425,spa
dcterms.bibliographicCitationLee J.-O., Kim Y.-S., Moon S.-I. Current injection power flow analysis and optimal generation dispatch for bipolar DC microgrids IEEE Trans. Smart Grid, 12 (3) (2021), pp. 1918-1928,spa
dcterms.bibliographicCitationMontoya O.D., Gil-González W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems Electr. Power Syst. Res., 187 (2020), Article 106454, 10.1016/j.epsr.2020.106454spa
dcterms.bibliographicCitationHerrera-Briñez M.C., Montoya O.D., Alvarado-Barrios L., Chamorro H.R. The equivalence between successive approximations and matricial load flow formulations Appl. Sci., 11 (7) (2021), p. 2905, 10.3390/app11072905spa
dcterms.bibliographicCitationOuali S., Cherkaoui A. An improved backward/forward sweep power flow method based on a new network information organization for radial distribution systems J. Electr. Comput. Eng., 2020 (2020), pp. 1-11, 10.1155/2020/5643410spa
dcterms.bibliographicCitationLee J.-O., Kim Y.-S., Jeon J.-H. Generic power flow algorithm for bipolar DC microgrids based on Newton–Raphson method Int. J. Electr. Power Energy Syst., 142 (2022), Article 108357, 10.1016/j.ijepes.2022.108357spa
dcterms.bibliographicCitationGarces A. Uniqueness of the power flow solutions in low voltage direct current grids Electr. Power Syst. Res., 151 (2017), pp. 149-153, 10.1016/j.epsr.2017.05.031spa
dcterms.bibliographicCitationMontoya O.D., Giraldo J.S., Grisales-Noreña L.F., Chamorro H.R., Alvarado-Barrios L. Accurate and efficient derivative-free three-phase power flow method for unbalanced distribution networks Computation, 9 (6) (2021), p. 61, 10.3390/computation9060061spa
dcterms.bibliographicCitationLoomis L.H., Sternberg S. Advanced Calculus World Scientific (2014)spa
dcterms.bibliographicCitationShivakumar P.N., Williams J.J., Ye Q., Marinov C.A. On two-sided bounds related to weakly diagonally dominant M-matrices with application to digital circuit dynamics SIAM J. Matrix Anal. Appl., 17 (2) (1996), pp. 298-312, 10.1137/S0895479894276370spa
dcterms.bibliographicCitationShen T., Li Y., Xiang J. A graph-based power flow method for balanced distribution systems Energies, 11 (3) (2018), p. 511, 10.3390/en11030511spa
dcterms.bibliographicCitationMarini A., Mortazavi S., Piegari L., Ghazizadeh M.-S. An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations Electr. Power Syst. Res., 170 (2019), pp. 229-243, 10.1016/j.epsr.2018.12.026spa
dcterms.bibliographicCitationGarces A. On the convergence of Newton’s method in power flow studies for DC microgrids IEEE Trans. Power Syst., 33 (5) (2018), pp. 5770-5777, 10.1109/tpwrs.2018.2820430spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.epsr.2022.108264
dc.subject.keywordsBipolar DC networksspa
dc.subject.keywordsAsymmetric constant power loadsspa
dc.subject.keywordsSuccessive approximations power flow methodspa
dc.subject.keywordsEffect of the neutral conductorspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.