Show simple item record

dc.contributor.authorPagnola, Marcelo
dc.contributor.authorBarceló, Luis Francisco
dc.contributor.authorUseche Vivero, Jairo
dc.identifier.citationPagnola, Marcelo & Barceló, Luis & Useche, Jairo. (2022). Crack Formation in Chill Block Melt Spinning Solidification Process: A Comparative Analysis Using OpenFOAM®. JOM. 74. 10.1007/
dc.description.abstractThe application of FeSiB family magnetic materials in the electrical or electronic industry has significantly increased owing to the development of amorphous and nanocrystalline metallic glasses using melt spinning and chill block melt spinning technology, which involves a rotating metal wheel with a high rotation speed. With this technique, a thin ribbon is obtained owing to the jet of liquid metal expelled from a casting nozzle at high pressure and temperature over the outer surface of the wheel. The cooling rates that can be achieved lead to disorder in the crystalline lattice of the metal, which is dependent on the chemical composition. As soon as the material jet is expelled by the nozzle, turbulence can occur in the solidification puddles. This generates defects and cracks in the solidification profile. In this study, numerically simulated ad hoc events in OPENFOAM are comparatively examined using a real
dc.format.extent8 Páginas
dc.sourceComputational Design of Alloys for Energy Technologies - JOM, Vol. 74, No. 4, 2022spa
dc.titleCrack Formation in Chill Block Melt Spinning Solidification Process: A Comparative Analysis Using OpenFOAMspa
dcterms.bibliographicCitationM. Carlen, D. Xu, J. Clausen, T. Nunn, V.R. Ramanan, and D.M. Getson, IEEE Pes T&D. 2010.5484301 (2010).spa
dcterms.bibliographicCitationMariusz Najgebauer, Krzysztof Chwastek, Jan Szczygłowski, PRZEGLA˛ D ELEKTROTECHNICZNY, R. 87 NR 2/2011, ISSN 0033-2097spa
dcterms.bibliographicCitationR. Hasegawa, and D. Azuma, J. Magn. Magn. Mater. 320(20), 2451 (2008)spa
dcterms.bibliographicCitationD. Azuma, N. Ito, and M. Ohta, J. Magn. Magn. Mater. 501, 166373 (2020).spa
dcterms.bibliographicCitationG.-X. Wang, and E.F. Matthys, Modelling Simul. Mater. Sci. Eng. 10, 35 (2001).spa
dcterms.bibliographicCitationP.H. Steen, and C. Karcher, Annu. Rev. Fluid Mech. 29, 1. (1997).spa
dcterms.bibliographicCitationK. Suzuki, A. Makino, A. Inoue, and T. Masumoto, J. Applied Physics. 70, 6232 (1991).spa
dcterms.bibliographicCitationD. Muraca, J. Silveyra, M. Pagnola, and V. Cremaschi, J. Magn. Magn. Mater. 321(21), 3640 (2009).spa
dcterms.bibliographicCitationY. Nomura, J. Uzuhashi, T. Tomita, T. Takahashi, H. Kuwata, T. Abe, T. Ohkubo, and K. Hono, J. Alloys Comput. 859, 157832 (2021).spa
dcterms.bibliographicCitationM. Pagnola, S. Preckel, H. Alvarez Barrios, Development of Numeric Simulation Model for Production Control a Melt Spinning Process of Amorphous Ribbon Used in Transformer Cores. Paper presented at the 2nd International Conference on Materials, Mechatronics and Automation, Hanbat National University, Korea, 22–24 November
dcterms.bibliographicCitationM.R. Pagnola, M. Malmoria, M. Barone, and H. Sirkin, MMMS 10(4), 511 (2014).spa
dcterms.bibliographicCitationA.G. Marrugo, M. Barone, J. Useche, M. Pagnola, OSA. The Optical Society, Paper LTh2C.5. (2016).spa
dcterms.bibliographicCitationR.E. Napolitano, and H. Meco, Metal. Mater Trans A 35, 1539 (2004).spa
dcterms.bibliographicCitationM. Pagnola, M. Malmoria, and M. Barone, ATE 103(1), 807 (2016).spa
dcterms.bibliographicCitationM. Barone, F. Barcelo´, J. Useche, A. Larreteguy, and M. Pagnola, UIS 17(1), 185 (2017).spa
dcterms.bibliographicCitationC. Wang, Numerical Modeling of Free Surface and Rapid Solidification for Simulation and Analysis of Melt Spinning (Iowa State University-Ames, Iowa, 2010), pp 1–
dcterms.bibliographicCitationM. Barone, F. Barcelo´, M. Pagnola, A. Larreteguy, A. Marrugo, and J. Useche, Int. J Therm. Sci. 150, 106221 (2020)spa
dcterms.bibliographicCitationJ. Carpenter, and P. Steen, Int. J. Heat Mass Transf. 40(9), 1993 (1997).spa
dcterms.bibliographicCitationM. Pagnola, M. Barone, M. Malmoria, and H. Sirkin, MMMS 11(1), 23 (2015).spa
dcterms.bibliographicCitationG. Wang, and E. Matthys, Model. Simul. Mater. Sci. Eng. 10(1), 35 (2002).spa
dcterms.bibliographicCitationV.I. Tkatch, A.I. Limanovskii, S.N. Denisenko, and S.G. Rassolov, Mater. Sci. Eng. A 323(1–2), 91 (2002).spa
dcterms.bibliographicCitationG. Pozo Lopez, L.M. Fabietti, A.M. Condo, and S.E. Urreta, JMMM 322(20), 3088 (2010).spa
dcterms.bibliographicCitationY. Takata, H. Shirakawa, H. Sasaki, T. Kuroki, and T. Ito, Scripta Technica Heat Trans Asian Res. 28(1), 34 (1999).spa
dcterms.bibliographicCitationM. Bussman, J. Mostaghimi, D.W. Kirk, and J.W. Graydon, Int. J. Heat Mass Transf. 45(19), 3997 (2002).spa
dcterms.bibliographicCitationR. Dhadwal, Appl. Math. Model. 35(6), 2959 (2011).spa
dc.subject.keywordsTecnologías Energéticasspa
dc.subject.keywordsIndustria eléctricaspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa

Files in this item


This item appears in the following Collection(s)

Show simple item record
Except where otherwise noted, this item's license is described as

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.