Mostrar el registro sencillo del ítem

dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorRamírez-Vanegas, Carlos Alberto
dc.contributor.authorGrisales-Noreña, Luis Fernando
dc.date.accessioned2022-07-08T13:52:12Z
dc.date.available2022-07-08T13:52:12Z
dc.date.issued2021-06-16
dc.date.submitted2022-07-07
dc.identifier.citationMontoya Giraldo, Oscar & Ramírez-Vanegas, Carlos & Grisales-Noreña, Luis. (2022). Parametric estimation in photovoltaic modules using the crow search algorithm. International Journal of Electrical and Computer Engineering. 12. 82-91. 10.11591/ijece.v12i1.pp82-91.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10704
dc.description.abstractThe problem of parametric estimation in photovoltaic (PV) modules considering manufacturer information is addressed in this research from the perspective of combinatorial optimization. With the data sheet provided by the PV manufacturer, a non-linear non-convex optimization problem is formulated that contains information regarding maximum power, open-circuit, and short-circuit points. To estimate the three parameters of the PV model (i.e., the ideality diode factor (a) and the parallel and series resistances (Rp and Rs)), the crow search algorithm (CSA) is employed, which is a metaheuristic optimization technique inspired by the behavior of the crows searching food deposits. The CSA allows the exploration and exploitation of the solution space through a simple evolution rule derived from the classical PSO method. Numerical simulations reveal the effectiveness and robustness of the CSA to estimate these parameters with objective function values lower than 1 × 10−28 and processing times less than 2 s. All the numerical simulations were developed in MATLAB 2020a and compared with the sine-cosine and vortex search algorithms recently reported in the literature.spa
dc.format.extent10 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceInternational Journal of Electrical and Computer Engineering (IJECE) - Vol. 12, No 1 (2021)spa
dc.titleParametric estimation in photovoltaic modules using the crow search algorithmspa
dcterms.bibliographicCitationM. S. Cengiz and M. S. Mamis¸, “Price-efficiency relationship for photovoltaic systems on a global basis,” International Journal of Photoenergy, vol. 2015, pp. 1–12, 2015, doi: 10.1155/2015/256101spa
dcterms.bibliographicCitationA. Omar, H. M. Hasanien, M. A. Elgendy, and M. A. L. Badr, “Identification of the photovoltaic model parameters using the crow search algorithm,” The Journal of Engineering, vol. 2017, no. 13, pp. 1570–1575, Jan. 2017spa
dcterms.bibliographicCitationA. Paz-Rodrıguez, J. F. Castro-Ordo˜nez, O. D. Montoya, and D. A. Giral-Ramırez, “Optimal integration of photovoltaic sources in distribution networks for daily energy losses minimization using the vortex search algorithm,” Applied Sciences, vol. 11, no. 10, May. 2021, Art. No. 4418, doi: 10.3390/app11104418.spa
dcterms.bibliographicCitationO. D. Montoya, L. F. Grisales-Nore˜na, W. Gil-Gonzalez, G. Alcala, and Q. Hernandez-Escobedo, “Optimal location and sizing of PV sources in DC networks for minimizing greenhouse emissions in diesel generators,” Symmetry, vol. 12, no. 2, Feb. 2020, Art. No. 322, doi: 10.3390/sym12020322.spa
dcterms.bibliographicCitationP. P. Biswas, P. Suganthan, G. Wu, and G. A. Amaratunga, “Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm,” Renewable Energy, vol. 132, pp. 425-438, 2019, doi: 10.1016/j.renene.2018.07.152spa
dcterms.bibliographicCitationD. G. Montoya, C. A. R. Paja, and R. Giral, “Maximum power point tracking of photovoltaic systems based on the sliding mode control of the module admittance,” Electr. Power Syst. Res., vol. 136, pp. 125–134, Jul. 2016, doi: 10.1016/j.epsr.2016.02.001spa
dcterms.bibliographicCitationM. Al-Soeidat, D. D.-C. Lu, and J. Zhu, “An analog BJT-tuned maximum power point tracking technique for PV systems,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 4, pp. 637–641, Apr. 2019, doi: 10.1109/TCSII.2018.2865804.spa
dcterms.bibliographicCitationM. Arjun, V. V. Ramana, R. Viswadev, and B. Venkatesaperumal, “An iterative analytical solution for calculating maximum power point in photovoltaic systems under partial shading conditions,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 6, pp. 973–977, Jun. 2019, doi: 10.1109/TCSII.2018.2867088.spa
dcterms.bibliographicCitationA. R. Jordehi, “Parameter estimation of solar photovoltaic (PV) cells: A review,” Renewable Sustainable Energy Rev., vol. 61, pp. 354–371, Aug. 2016, doi: 10.1016/j.rser.2016.03.049.spa
dcterms.bibliographicCitationO. D. Montoya, W. Gil-Gonzalez, and L. F. Grisales-Nore˜na, “Sine-cosine algorithm for parameters’ estimation in solar cells using datasheet information,” Journal of Physics: Conference Series, vol. 1671, Oct. 2020, Art. No. 012008spa
dcterms.bibliographicCitationU. Jadli, P. Thakur, and R. D. Shukla, “A new parameter estimation method of solar photovoltaic,” IEEE Journal of Photovoltaics, vol. 8, no. 1, pp. 239–247, 2018, doi: 10.1109/JPHOTOV.2017.2767602.spa
dcterms.bibliographicCitationW. J. Gil-Gonzalez, O. D. Montoya, and J. M. Lopez-Lezama, “Vortex search algorithm applied to the parametric estimation in pv cells considering manufacturer datasheet information,” IEEE Latin America Transactions, vol. 19, no. 9, pp. 1581–1589, Sep. 2021, doi: 10.1109/TLA.2021.9468612.spa
dcterms.bibliographicCitationA. Elkholy and A. A. El-Ela, “Optimal parameters estimation and modelling of photovoltaic modules using analytical method,” Heliyon, vol. 5, no. 7, p. e02137, Jul. 2019, doi: 10.1016/j.heliyon.2019.e02137spa
dcterms.bibliographicCitationM. A. Awadallah and B. Venkatesh, “Estimation of PV module parameters from datasheet information using optimization techniques,” in 2015 IEEE International Conference on Industrial Technology (ICIT), Mar. 2015, doi: 10.1109/ICIT.2015.7125507spa
dcterms.bibliographicCitationJ. Ma, T. O. Ting, K. L. Man, N. Zhang, S.-U. Guan, and P. W. H. Wong, “Parameter estimation of photovoltaic models via cuckoo search,” J. Appl. Math., vol. 2013, pp. 1–8, 2013, doi: 10.1155/2013/362619spa
dcterms.bibliographicCitationN. Maouhoub, “Photovoltaic module parameter estimation using an analytical approach and least squares method,” J. Comput. Electron., vol. 17, no. 2, pp. 784–790, Jan. 2018, doi: 10.1007/s10825-017-1121-5.spa
dcterms.bibliographicCitationH. M. Ridha, C. Gomes, and H. Hizam, “Estimation of photovoltaic module model’s parameters using an improved electromagneticlike algorithm,” Neural Computing and Applications, vol. 32, no. 16, pp. 12627–12642, Jan. 2020, doi: 10.1007/s00521-020-04714- zspa
dcterms.bibliographicCitationO. S. Elazab, H. M. Hasanien, I. Alsaidan, A. Y. Abdelaziz, and S. M. Muyeen, “Parameter estimation of three diode photovoltaic model using grasshopper optimization algorithm ,” Energies, vol. 13, no. 2, Jan. 2020, Art. No. 497, doi: 10.3390/en13020497spa
dcterms.bibliographicCitationJ. Montano, A. F. Tobon, J. P. Villegas, and M. Durango, “Grasshopper optimization algorithm for parameter estimation of photovoltaic modules based on the single diode model,” International Journal of Energy and Environmental Engineering, vol. 11, no. 3, pp. 367–375, Feb. 2020, doi: 10.1007/s40095-020-00342-4.spa
dcterms.bibliographicCitationA. K. Abdulrazzaq, G. Bognar, and B. Plesz, “Accurate method for PV solar cells and modules parameters extraction using i–v curves,” Journal of King Saud University-Engineering Sciences, Jul. 2020, doi: 10.1016/j.jksues.2020.07.008.spa
dcterms.bibliographicCitationR. Ndegwa, J. Simiyu, E. Ayieta, and N. Odero, “A fast and accurate analytical method for parameter determination of a photovoltaic system based on manufacturer’s data,” Journal of Renewable Energy, vol. 2020, pp. 1–18, May. 2020, doi: 10.1155/2020/7580279.spa
dcterms.bibliographicCitationR. Chelouah and P. Siarry, “Continuous genetic algorithm designed for the global optimization of multimodal functions,” Journal of Heuristics, vol. 6, no. 2, pp. 191–213, 2000, doi: 10.1023/A:1009626110229.spa
dcterms.bibliographicCitationA. Askarzadeh, “A novel metaheuristic method for solving constrained engineering optimization prob- lems: Crow search algorithm,” Computers and Structures, vol. 169, pp. 1–12, Jun. 2016.spa
dcterms.bibliographicCitationY. Meraihi, A. B. Gabis, A. Ramdane-Cherif, and D. Acheli, “A comprehensive survey of Crow Search Algorithm and its applications,” Artificial Intelligence Review, Sep. 2020spa
dcterms.bibliographicCitationB. Zolghadr-Asli, O. Bozorg-Haddad, and X. Chu, “Crow search algorithm (CSA),” in Advanced Optimization by Nature-Inspired Algorithms, Springer Singapore, Jul. 2017, pp. 143–149, doi: 10.1007/978-981-10-5221-7-14spa
dcterms.bibliographicCitationA. A. E. Ela, R. A. El-Sehiemy, A. Shaheen, and A. Shalaby, “Application of the crow search algorithm for economic environmental dispatch,” in 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), Dec. 2017, doi: 10.1109/MEPCON.2017.8301166spa
dcterms.bibliographicCitationS. Shekhawat and A. Saxena, “Development and applications of an intelligent crow search algorithm based on opposition based learning,” ISA Transactions, vol. 99, pp. 210–230, Apr. 2020, doi: 10.1016/j.isatra.2019.09.004.spa
dcterms.bibliographicCitationO. D. Montoya, W. Gil-Gonzalez, and L. F. Grisales-Norena, “Vortex search algorithm for optimal power flow analysis in DC resistive networks with CPLs,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 8, pp. 1439–1443, Aug. 2020, doi: 10.1109/TCSII.2019.2938530.spa
dcterms.bibliographicCitationV. Khanna, B. K. Das, D. Bisht, Vandana, and P. K. Singh, “Estimation of photovoltaic cells model parameters using particle swarm optimization,” in Physics of Semiconductor Devices, Springer International Publishing, 2014, pp. 391–394, doi: 10.1007/978-3-319-03002-9-98.spa
dcterms.bibliographicCitationY. Zhang, S. Lyden, B. L. de la Barra, and M. Haque, “A genetic algorithm approach to parameter estimation for PV modules,” in 2016 IEEE Power and Energy Society General Meeting (PESGM), Jul. 2016, doi: 10.1109/PESGM.2016.7741781.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doi10.11591/ijece.v12i1.pp82-91
dc.subject.keywordsCrow search algorithmspa
dc.subject.keywordsManufacturer informationspa
dc.subject.keywordsMetaheuristic optimizationspa
dc.subject.keywordsParametric estimationspa
dc.subject.keywordsPhotovoltaic modulesspa
dc.subject.keywordsSingle-diode modelspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.