Mostrar el registro sencillo del ítem

dc.contributor.authorAguirre-Angulo, Brayan Enrique
dc.contributor.authorGiraldo-Bello, Lady Carolina
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorDavid Moya, Francisco
dc.date.accessioned2022-06-29T19:34:21Z
dc.date.available2022-06-29T19:34:21Z
dc.date.issued2022-01-25
dc.date.submitted2022-06-28
dc.identifier.citationAguirre-Angulo, B.E.; Giraldo-Bello, L.C.; Montoya, O.D.; Moya, F.D. Optimal Integration of Dispersed Generation in Medium-Voltage Distribution Networks for Voltage Stability Enhancement. Algorithms 2022, 15, 37. https://doi.org/10.3390/a15020037spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10702
dc.description.abstract: This study addresses the problem of the maximization of the voltage stability index (λcoefficient) in medium-voltage distribution networks considering the optimal placement and sizing of dispersed generators. The problem is formulated through a mixed-integer nonlinear programming model (MINLP), which is solved using General Algebraic Modeling System (GAMS) software. A numerical example with a 7-bus radial distribution network is employed to introduce the usage of GAMS software to solve the proposed MINLP model. A new validation methodology to verify the numerical results provided for the λ-coefficient is proposed by using recursive power flow evaluations in MATLAB and DigSILENT software. The recursive evaluations allow the determination of the λ-coefficient through the implementation of the successive approximation power flow method and the Newton–Raphson approach, respectively. It is effected by fixing the sizes and locations of the dispersed sources using the optimal solution obtained with GAMS software. Numerical simulations in the IEEE 33- and 69-bus systems with different generation penetration levels and the possibility of installing one to three dispersed generators demonstrate that the GAMS and the recursive approaches determine the same loadability index. Moreover, the numerical results indicate that, depending on the number of dispersed generators allocated, it is possible to improve the λ-coefficient between 20.96% and 37.43% for the IEEE 33-bus system, and between 18.41% and 41.98% for the IEEE 69-bus systemspa
dc.format.extent19 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceAlgorithms, Vol. 15 N° 2 (2022)spa
dc.titleOptimal Integration of Dispersed Generation in Medium-Voltage Distribution Networks for Voltage Stability Enhancementspa
dcterms.bibliographicCitationValencia, A.; Hincapie, R.A.; Gallego, R.A. Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium–low voltage distribution networks. J. Energy Storage 2021, 34, 102158spa
dcterms.bibliographicCitationPaz-Rodríguez, A.; Castro-Ordoñez, J.F.; Montoya, O.D.; Giral-Ramírez, D.A. Optimal Integration of Photovoltaic Sources in Distribution Networks for Daily Energy Losses Minimization Using the Vortex Search Algorithm. Appl. Sci. 2021, 11, 4418spa
dcterms.bibliographicCitationLevitin, G.; Mazal-Tov, S.; Elmakis, D. Reliability indices of a radial distribution system with sectionalizing as a function of network structure parameters. Electr. Power Syst. Res. 1996, 36, 73–80spa
dcterms.bibliographicCitationLópez-Prado, J.L.; Vélez, J.I.; Garcia-Llinás, G.A. Reliability Evaluation in Distribution Networks with Microgrids: Review and Classification of the Literature. Energies 2020, 13, 6189spa
dcterms.bibliographicCitationKaur, S.; Kumbhar, G.; Sharma, J. A MINLP technique for optimal placement of multiple DG units in distribution systems. Int. J. Electr. Power Energy Syst. 2014, 63, 609–617.spa
dcterms.bibliographicCitationAyodele, T.R.; Ogunjuyigbe, A.S.O.; Akinola, O.O. Optimal Location, Sizing, and Appropriate Technology Selection of Distributed Generators for Minimizing Power Loss Using Genetic Algorithm. J. Renew. Energy 2015, 2015, 832917spa
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Rajagopalan, A.; Grisales-Noreña, L.F.; Hernández, J.C. Optimal Selection and Location of Fixed-Step Capacitor Banks in Distribution Networks Using a Discrete Version of the Vortex Search Algorithm. Energies 2020, 13, 4914spa
dcterms.bibliographicCitationGnanasekaran, N.; Chandramohan, S.; Kumar, P.S.; Imran, A.M. Optimal placement of capacitors in radial distribution system using shark smell optimization algorithm. Ain Shams Eng. J. 2016, 7, 907–916.spa
dcterms.bibliographicCitationHassan, A.S.; Othman, E.A.; Bendary, F.M.; Ebrahim, M.A. Optimal integration of distributed generation resources in active distribution networks for techno-economic benefits. Energy Rep. 2020, 6, 3462–3471spa
dcterms.bibliographicCitationCastiblanco-Pérez, C.M.; Toro-Rodríguez, D.E.; Montoya, O.D.; Giral-Ramírez, D.A. Optimal Placement and Sizing of DSTATCOM in Radial and Meshed Distribution Networks Using a Discrete-Continuous Version of the Genetic Algorithm. Electronics 2021, 10, 1452.spa
dcterms.bibliographicCitationBaltensperger, D.; Buechi, A.; Sevilla, F.S.; Korba, P. Optimal Integration of Battery Energy Storage Systems and Control of Active Power Curtailment for Distribution Generation. IFAC-PapersOnLine 2017, 50, 8856–8860spa
dcterms.bibliographicCitationGrisales-Noreña, L.; Montoya, O.D.; Gil-González, W. Integration of energy storage systems in AC distribution networks: Optimal location, selecting, and operation approach based on genetic algorithms. J. Energy Storage 2019, 25, 100891spa
dcterms.bibliographicCitationOnlam, A.; Yodphet, D.; Chatthaworn, R.; Surawanitkun, C.; Siritaratiwat, A.; Khunkitti, P. Power Loss Minimization and Voltage Stability Improvement in Electrical Distribution System via Network Reconfiguration and Distributed Generation Placement Using Novel Adaptive Shuffled Frogs Leaping Algorithm. Energies 2019, 12, 553spa
dcterms.bibliographicCitationHao, Q.; Gao, Z.; Bai, X.; Cao, M. Two-level reconfiguration algorithm of branch exchange and variable neighbourhood search for active distribution network. Syst. Sci. Control Eng. 2018, 6, 109–117spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Orozco-Henao, C. Vortex search and Chu-Beasley genetic algorithms for optimal location and sizing of distributed generators in distribution networks: A novel hybrid approach. Eng. Sci. Technol. Int. J. 2020, 23, 1351–1363.spa
dcterms.bibliographicCitationDevabalaji, K.; Imran, A.M.; Yuvaraj, T.; Ravi, K. Power Loss Minimization in Radial Distribution System. Energy Procedia 2015, 79, 917–923spa
dcterms.bibliographicCitationRanjan, R.; Das, D. Voltage Stability Analysis of Radial Distribution Networks. Electr. Power Components Syst. 2003, 31, 501–511spa
dcterms.bibliographicCitationZhang, L.; Sun, L. Multi-Objective Service Restoration for Blackout of Distribution System with Distributed Generators based on Multi-Agent GA. Energy Procedia 2011, 12, 253–262.spa
dcterms.bibliographicCitationBulat, H.; Frankovi´c, D.; Vlahini´c, S. Enhanced Contingency Analysis—A Power System Operator Tool. Energies 2021, 14, 923.spa
dcterms.bibliographicCitationChakravorty, M.; Das, D. Voltage stability analysis of radial distribution networks. Int. J. Electr. Power Energy Syst. 2001, 23, 129–135spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Arias-Londoño, A.; Rajagopalan, A.; Hernández, J.C. Voltage Stability Analysis in MediumVoltage Distribution Networks Using a Second-Order Cone Approximation. Energies 2020, 13, 5717spa
dcterms.bibliographicCitationGhaffarianfar, M.; Hajizadeh, A. Voltage Stability of Low-Voltage Distribution Grid with High Penetration of Photovoltaic Power Units. Energies 2018, 11, 1960spa
dcterms.bibliographicCitationAly, M.M.; Abdel-Akher, M. A continuation power-flow for distribution systems voltage stability analysis. In Proceedings of the 2012 IEEE International Conference on Power and Energy (PECon), Kota Kinabalu, Malaysia, 2–5 December 2012spa
dcterms.bibliographicCitationShukla, A.; Verma, K.; Siddiqui, S.A. Voltage stability improvement of distribution networks by enhancing DGs impacts. In Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 4–6 July 2016.spa
dcterms.bibliographicCitationGrisales-Noreña, L.; Montoya, D.G.; Ramos-Paja, C. Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques. Energies 2018, 11, 1018spa
dcterms.bibliographicCitationMoradi, M.; Abedini, M. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energy Syst. 2012, 34, 66–74spa
dcterms.bibliographicCitationRasheed, M.A.; Verayiah, R. Investigation of Optimal PV Allocation to Minimize System Losses and Improve Voltage Stability for Distribution and Transmission Networks Using MATLAB and DigSilent. Front. Energy Res. 2021, 9, 695814spa
dcterms.bibliographicCitationZongo, O.A.; Oonsivilai, A. Optimal placement of distributed generator for power loss minimization and voltage stability improvement. Energy Procedia 2017, 138, 134–139spa
dcterms.bibliographicCitationParizad, A.; Khazali, A.; Kalantar, M. Optimal placement of distributed generation with sensitivity factors considering voltage stability and losses indices. In Proceedings of the 2010 18th Iranian Conference on Electrical Engineering, Isfahan, Iran, 11–13 May 2010.spa
dcterms.bibliographicCitationAzad, S.; Amiri, M.M.; Heris, M.N.; Mosallanejad, A.; Ameli, M.T. A Novel Analytical Approach for Optimal Placement and Sizing of Distributed Generations in Radial Electrical Energy Distribution Systems. Sustainability 2021, 13, 10224.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Grisales-Noreña, L. An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach. Ain Shams Eng. J. 2020, 11, 409–418spa
dcterms.bibliographicCitationSoroudi, A. Power System Optimization Modeling in GAMS; Springer International Publishing: Berlin/Heidelberg, Germany, 2017spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems. Electr. Power Syst. Res. 2020, 187, 106454spa
dcterms.bibliographicCitationRao, B.; Kupzog, F.; Kozek, M. Three-Phase Unbalanced Optimal Power Flow Using Holomorphic Embedding Load Flow Method. Sustainability 2019, 11, 1774spa
dcterms.bibliographicCitationMachowski, J.; Bialek, J.; Bumby, J.; Bumby, J. Power System Dynamics and Stability; Wiley: Hoboken, NJ, USA, 1997.spa
dcterms.bibliographicCitationSmon, I.; Verbic, G.; Gubina, F. Local Voltage-Stability Index Using Tellegen's Theorem. IEEE Trans. Power Syst. 2006, 21, 1267–1275.spa
dcterms.bibliographicCitationCalasan, M.; Kecojevi´c, K.; Lukaˇcevi´c, O.; Ali, Z.M. Testing of influence of SVC and energy storage device’s location on power ´ system using GAMS. In Uncertainties in Modern Power Systems; Elsevier: Amsterdam, The Netherlands, 2021; pp. 297–342.spa
dcterms.bibliographicCitationSerra, F.M.; Montoya, O.D.; Alvarado-Barrios, L.; Álvarez-Arroyo, C.; Chamorro, H.R. On the Optimal Selection and Integration of Batteries in DC Grids through a Mixed-Integer Quadratic Convex Formulation. Electronics 2021, 10, 2339spa
dcterms.bibliographicCitationSkworcow, P.; Paluszczyszyn, D.; Ulanicki, B.; Rudek, R.; Belrain, T. Optimisation of Pump and Valve Schedules in Complex Large-scale Water Distribution Systems Using GAMS Modelling Language. Procedia Eng. 2014, 70, 1566–1574spa
dcterms.bibliographicCitationTartibu, L.; Sun, B.; Kaunda, M. Multi-objective optimization of the stack of a thermoacoustic engine using GAMS. Appl. Soft Comput. 2015, 28, 30–43spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W. A MIQP model for optimal location and sizing of dispatchable DGs in DC networks. Energy Syst. 2020, 12, 181–202.spa
dcterms.bibliographicCitationAmin, W.T.; Montoya, O.D.; Grisales-Noreña, L.F. Determination of the Voltage Stability Index in DC Networks with CPLs: A GAMS Implementation. In Applied Computer Sciences in Engineering, 6th Workshop on Engineering Applications, WEA 2019; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 552–564spa
dcterms.bibliographicCitationAndrei, N. Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology; Springer International Publishing: Berlin/Heidelberg, Germany, 2017spa
dcterms.bibliographicCitationMontoya, O.D.; Molina-Cabrera, A.; Hernandez, J.C. A Comparative Study on Power Flow Methods Applied to AC Distribution Networks with Single-Phase Representation. Electronics 2021, 10, 2573.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.3390/a15020037
dc.subject.keywordsVoltage stability analysisspa
dc.subject.keywordsMathematical optimizationspa
dc.subject.keywordsRecursive solution methodologiesspa
dc.subject.keywordsDispersed generationspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.