Mostrar el registro sencillo del ítem
Trade-Off Asymmetric Profile for Extended-Depth-of-Focus Ocular Lens
dc.contributor.author | Romero, Lenny A. | |
dc.contributor.author | Marrugo Hernández, Andrés Guillermo | |
dc.contributor.author | Millán, María S. | |
dc.date.accessioned | 2022-05-19T21:17:56Z | |
dc.date.available | 2022-05-19T21:17:56Z | |
dc.date.issued | 2022-02-19 | |
dc.date.submitted | 2022-05-19 | |
dc.identifier.citation | Romero, L.A.; Marrugo, A.G.; Millán, M.S. Trade-Off Asymmetric Profile for Extended-Depth-of-Focus Ocular Lens. Photonics 2022, 9, 119. https://doi.org/10.3390/photonics9020119 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10697 | |
dc.description.abstract | We explore the possibility of extending the depth of focus of an imaging lens with an asymmetric quartic phase-mask, while keeping the aberration within a relatively low level. This can be intended, for instance, for ophthalmic applications, where no further digital processing can take place, relying instead on the patient’s neural adaptation to their own aberrations. We propose a computational optimization method to derive the design-strength factor of the asymmetric profile. The numerical and experimental results are shown. The optical experiment was conducted by means of a modulo-2π phase-only spatial light modulator. The proposed combination of the asymmetric mask and the lens can be implemented in a single refractive element. An exemplary case of an extended-depth-of focus intraocular lens based on the proposed element is described and demonstrated with a numerical experiment. | spa |
dc.format.extent | 15 Páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Photonics - Vol. 9 N° 2 (2022) | spa |
dc.title | Trade-Off Asymmetric Profile for Extended-Depth-of-Focus Ocular Lens | spa |
dcterms.bibliographicCitation | Wang, B.; Ciureda, K.J. Depth-of-Focus of the Human Eye: Theory and Clinical Implications. Surv. Ophthalmol. 2006, 51, 75–85 | spa |
dcterms.bibliographicCitation | Zalevsky, Z. Extended depth of focus imaging: A review. SPIE Rev. 2010, 1, 018001 | spa |
dcterms.bibliographicCitation | Romero, L.A.; Millan, M.S. Programmable Diffractive Optical Elements with Applicability in Ophthalmic Optics. Opt. Pura Apl. 2017, 50, 75–91. | spa |
dcterms.bibliographicCitation | Castro, A.; Ojeda-Castañeda, J. Asymmetric phase masks for extended depth of field. Appl. Opt. 2004, 43, 3474–3479. | spa |
dcterms.bibliographicCitation | Castro, A.; Frauel, Y.; Javidi, B. Integral imaging with large depth of field using an asymmetric phase mask. Opt. Express 2007, 15, 10266–10273 | spa |
dcterms.bibliographicCitation | Artal, P.; Chen, L.; Fernández, E.J.; Singer, B.; Manzanera, S.; Williams, D.R. Neural compensation for the eye’s optical aberrations. J. Vis. 2004, 4, 281–287 | spa |
dcterms.bibliographicCitation | Sawides, L.; de Gracia, P.; Dorronsoro, C.; Webster, M.A.; Marcos, S. Vision is adapted to the natural level of blur present in the retinal image. PLoS ONE 2011, 6, e27031 | spa |
dcterms.bibliographicCitation | Radhakrishnan, A.; Dorronsoro, C.; Sawides, L.; Webster, M.A.; Marcos, S. A cyclopean neural mechanism compensating for optical differences between the eyes. Curr. Biol. 2015, 25, 188–189. | spa |
dcterms.bibliographicCitation | Petelczyc, K.; Bara, S.; Ciro López, A.; Jaroszewicz, Z.; Kakarenko, K.; Kołodziejczyk, A.; Sypek, M. Contrast transfer characteristics of the light sword optical element designed for presbyopia compensations. J. Eur. Opt. Soc. Rapid Publ. 2011, 6, 11053. | spa |
dcterms.bibliographicCitation | Romero, L.A.; Millan, M.S.; Jaroszewicz, Z.; Kolodziejczyk, A. Double peacock eye optical element for extended focal depth imaging with ophthalmic applications. J. Biomed. Opt. 2012, 17, 046013 | spa |
dcterms.bibliographicCitation | Charman, W.N.; Liu, Y.; Atchison, D.A. Small-aperture optics for the presbyope: Do comparable designs of corneal inlays and intraocular lenses provide similar transmittances to the retina? J. Opt. Soc. Am. A 2019, 36, B7–B14. | spa |
dcterms.bibliographicCitation | Benard, Y.; Lopez-Gil, N.; Legras, R. Subjective depth of field in presence of 4th-order and 6th-order Zernike spherical aberration using adaptive optics technology. J. Cataract Refract. Surg. 2010, 36, 2129–2138. | spa |
dcterms.bibliographicCitation | Barbero, S. Smooth multifocal wavefronts with a prescribed mean curvature for visual optics applications. Appl. Opt. 2021, 60, 6147–6154 | spa |
dcterms.bibliographicCitation | Goodman, J.W. Introduction to Fourier Optics, 2nd ed.; McGraw-Hill: New York, NY, USA, 1996; Chapter 5. | spa |
dcterms.bibliographicCitation | Hopkins, H.H. The frequency response of a defocused optical system. Proc. R. Soc. London Ser. A Math. Phys. Sci. 1955, 231, 91–103. | spa |
dcterms.bibliographicCitation | Boreman, G.D. Modulation Transfer Function in Optical and Electro-Optical Systems, Volume TT 52; SPIE Press: Bellingham, DC, USA, 2001. | spa |
dcterms.bibliographicCitation | Marsack, J.D.; Thibos, L.N.; Applegate, R.A. Metrics of optical quality derived from wave aberrations predict visual performance. J. Vis. 2004, 4, 8. | spa |
dcterms.bibliographicCitation | Thibos, L.N.; Hong, X.; Bradley, A.; Applegate, R.A. Accuracy and precision of objective refraction from wavefront aberrations. J. Vis. 2004, 4, 329–351 | spa |
dcterms.bibliographicCitation | Demenikov, M. Optimization of hybrid imaging systems based on maximization of kurtosis of the restored point spread function. Opt. Lett. 2011, 36, 4740–4742 | spa |
dcterms.bibliographicCitation | Carles, G.; Carnicer, A.; Bosch, S. Phase mask selection in wavefront coding systems: A design approach. Opt. Laser Eng. 2010, 48, 779–785 | spa |
dcterms.bibliographicCitation | Voelz, D.G. Computational Fourier Optics: A MATLAB Tutorial; SPIE Press: Bellingham, DC, USA, 2011; Chapter 7. | spa |
dcterms.bibliographicCitation | Otón, J.; Ambs, P.; Millán, M.S.; Pérez-Cabré, E. Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays. Appl. Opt. 2007, 46, 5667–5679. | spa |
dcterms.bibliographicCitation | Samei, E.; Flynn, M.; Reimann, D. A method for measuring the presampled MTF of digital radiographic systems using an edge test device. Med. Phys. 1998, 25, 102–113 | spa |
dcterms.bibliographicCitation | Mikuła, G.; Kolodziejczyk, A.; Makowski, M.; Prokopowicz, C.; Sypek, M. Diffractive elements for imaging with extended depth of focus. Opt. Eng. 2005, 44, 058001 | spa |
dcterms.bibliographicCitation | Romero, L. Programmable Diffractive Optical Elements with Applicability in Ophthalmic Optics. Ph.D. Dissertation, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain, 2013. | spa |
dcterms.bibliographicCitation | ISO 11979-2; Ophthalmic Implants, Intraocular Lenses—Part 2: Optical Properties and Test Methods. International Organization for Standardization: Geneva, Switzerland, 2014. | spa |
dcterms.bibliographicCitation | Millán, M.S.; Vega, F. Extended depth of focus intraocular lens: Chromatic performance. Biomed. Opt. Express 2017, 8, 4294–4309. | spa |
dcterms.bibliographicCitation | ANSI Z80.35-2018; American National Standard Institute, Ophthalmics. Extended Depth of Focus Intraocular Lenses. The Vision Council: Alexandria, VA, USA, 2018. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.doi | https://doi.org/10.3390/photonics9020119 | |
dc.subject.keywords | Extended depth of focus | spa |
dc.subject.keywords | Depth of field | spa |
dc.subject.keywords | Phase mask | spa |
dc.subject.keywords | Ophthalmic lens | spa |
dc.subject.keywords | Intraocular lens | spa |
dc.subject.keywords | Range of vision | spa |
dc.subject.keywords | Presbyopia compensation | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.