Show simple item record

dc.contributor.authorNarvaez, Alexander
dc.contributor.authorUseche, Jairo
dc.identifier.citationNarvaez, Alexander & Useche, Jairo. (2022). A new radial basis integration method applied to the boundary element analysis of 2D scalar wave equations. Engineering Analysis with Boundary Elements. 136. 77-92. 10.1016/
dc.description.abstractA new integration method named the Radial Basis Integration Method (RBIM) that include the Kriging Integration Method (KIM) Narváez and Useche (2020) as a particular case and performs boundary only offline precomputations for the creation of a meshless quadrature was developed for its application in boundary elements. Herein, as in DR-BEM, the inertial term is approximated using radial basis functions, however, its particular solution is not needed. The quadrature is now obtained in a simpler way than in KIM, because the evaluations of domain integrals necessary to compute the weights of quadrature points, is done transforming those to the boundary instead of using the Cartesian Transformation Method. Using RBIM, weakly singular domain integrals may be computed with good accuracy over complex domains. The results obtained in some scalar wave propagation problems using both Houbolt-a and Newmark-a time marching methods show that this procedure can be even more accurate than other used in BEM analysisspa
dc.format.extent16 Páginas
dc.sourceEngineering Analysis with Boundary Elements - Vol. 136 (2022)spa
dc.titleA new radial basis integration method applied to the boundary element analysis of 2D scalar wave equationsspa
dcterms.bibliographicCitationDallner R., Kuhn G. Efficient evaluation of volume integrals in the boundary element method Comput Methods Appl Mech Engrg, 109 (1) (1993), pp. 95-109, 10.1016/0045-7825(93)90226-N URL
dcterms.bibliographicCitationCarrer J.A.M., Mansur W.J., Vanzuit R.J. Scalar wave equation by the boundary element method: a D-BEM approach with non-homogeneous initial conditions Comput. Mech, 44 (1) (2009), p. 31, 10.1007/s00466-008-0353-4spa
dcterms.bibliographicCitationCarrer J.A.M., Mansur W.J. Scalar wave equation by the boundary element method: a D-BEM approach with constant time-weighting functions. Internat J Numer Methods Engrg, 81 (10) (2010), pp. 1281-1297, 10.1002/nme.2732spa
dcterms.bibliographicCitationDing J., Ye W. A grid-based integral approach for quasilinear problems Comput Mech, 38 (2) (2006), pp. 113-118spa
dcterms.bibliographicCitationKoehler M., Yang R., Gray L.J. Cell-based volume integration for boundary integral analysis Internat J Numer Methods Engrg, 90 (7) (2012), pp. 915-927spa
dcterms.bibliographicCitationWang Q., Zhou W., Cheng Y., Ma G., Chang X., Huang Q. An adaptive cell-based domain integration method for treatment of domain integrals in 3D boundary element method for potential and elasticity problems Acta Mech Solida Sin, 30 (1) (2017), pp. 99-111, 10.1016/j.camss.2016.08.002 URL
dcterms.bibliographicCitationNardini D., Brebbia C. A new approach to free vibration analysis using boundary elements Appl Math Model, 7 (1983), pp. 157-162spa
dcterms.bibliographicCitationPartridge P.W., Brebbia C.A. Computer implementation of the BEM dual reciprocity method for the solution of general field equations Commun Appl Numer Methods, 6 (2) (1990), pp. 83-92, 10.1002/cnm.1630060204spa
dcterms.bibliographicCitationAgnantiaris J., Polyzos D., Beskos D. Some studies on dual reciprocity BEM for elastodynamic analysis Comput Mech, 17 (4) (1996), pp. 270-277spa
dcterms.bibliographicCitationPartridge P.W., Brebbia C.A., et al. Dual reciprocity boundary element method Springer Science & Business Media (2012)spa
dcterms.bibliographicCitationUseche J., Narvaez A. Vibrational response of elastic membranes coupled to acoustic fluids using a BEM–BEM formulation De Clerck J. (Ed.), Topics in modal analysis I, vol. 7, Springer International Publishing, Cham (2014), pp. 333-340spa
dcterms.bibliographicCitationUseche J. Vibration analysis of shear deformable shallow shells using the boundary element method Eng Struct, 62–63 (2014), pp. 65-74, 10.1016/j.engstruct.2014.01.010spa
dcterms.bibliographicCitationUseche J., Alvarez H. Elastodynamic analysis of thick multilayer composite plates by the boundary element method CMES-Comput Model Eng Sci, 107 (4) (2015), pp. 277-296spa
dcterms.bibliographicCitationOchiai Y., Sladek V., Sladek J. Transient heat conduction analysis by triple-reciprocity boundary element method Eng Anal Bound Elem, 30 (2006), pp. 194-204, 10.1016/j.enganabound.2005.07.010spa
dcterms.bibliographicCitationGuo S., Wu Q., Li H.-G., Kuidong G. Triple reciprocity method for unknown function’s domain integral in boundary integral equation Eng Anal Bound Elem, 113 (2020), pp. 170-180, 10.1016/j.enganabound.2019.12.014spa
dcterms.bibliographicCitationNowak A., Brebbia C. The multiple-reciprocity method. a new approach for transforming bem domain integrals to the boundary Eng Anal Bound Elem, 6 (3) (1989), pp. 164-167spa
dcterms.bibliographicCitationNowak A. The multiple reciprocity boundary element method Computational Mechanics Publication, Southampton (1994), pp. 1-41spa
dcterms.bibliographicCitationOchiai Y., Sekiya T. Steady thermal stress analysis by improved multiple-reciprocity boundary element method J. Therm Stresses, 18 (6) (1995), pp. 603-620spa
dcterms.bibliographicCitationOchiai Y., Sekiya T. Steady heat conduction analysis by improved multiple-reciprocity boundary element method Eng Anal Bound Elem, 18 (2) (1996), pp. 111-117spa
dcterms.bibliographicCitationGao X.-W. The radial integration method for evaluation of domain integrals with boundary-only discretization Eng Anal Bound Elem, 26 (10) (2002), pp. 905-916spa
dcterms.bibliographicCitationLoeffler C., Cruz A., Bulcão A. Direct use of radial basis interpolation functions for modelling source terms with the boundary element method Eng Anal Bound Elem, 50 (2015), pp. 97-108, 10.1016/j.enganabound.2014.07.007spa
dcterms.bibliographicCitationGao X.-W. Evaluation of regular and singular domain integrals with boundary-only discretization—theory and fortran code J Comput Appl Math, 175 (2) (2005), pp. 265-290spa
dcterms.bibliographicCitationGipson G. The coupling of Monte Carlo integration with boundary integral techniques to solve Poisson-type problems Eng Anal, 2 (3) (1985), pp. 138-145spa
dcterms.bibliographicCitationKagawa Y., Murai T. Use of Monte Carlo method for singular integral evaluation in boundary elements COMPEL (1991)spa
dcterms.bibliographicCitationRosca V.E., ao V.M.L. Quasi-Monte Carlo mesh-free integration for meshless weak formulations Eng Anal Bound Elem, 32 (6) (2008), pp. 471-479, 10.1016/j.enganabound.2007.10.015 Meshless Methodsspa
dcterms.bibliographicCitationHematiyan M. A general method for evaluation of 2D and 3D domain integrals without domain discretization and its application in BEM Comput Mech, 39 (4) (2007), pp. 509-520spa
dcterms.bibliographicCitationNarváez A., Useche J. The kriging integration method applied to the boundary element analysis of Poisson problems Eng Anal Bound Elem, 121 (2020), pp. 1-20, 10.1016/j.enganabound.2020.09.001spa
dcterms.bibliographicCitationHoubolt J.C. A recurrence matrix solution for the dynamic response of elastic aircraft J Aeronaut Sci, 17 (9) (1950), pp. 540-550spa
dcterms.bibliographicCitationNewmark N.M. A method of computation for structural dynamics J Eng Mech Div, 85 (3) (1959), pp. 67-94spa
dcterms.bibliographicCitationYu G., Mansur W.J., Carrer J.A.M., Gong L. A linear method applied to 2D time-domain BEM Commun Numer Methods Eng, 14 (12) (1998), pp. 1171-1179, 10.1002/(SICI)1099-0887(199812)14:12¡1171::AID-CNM217¿3.0.CO;2-G URL
dcterms.bibliographicCitationChen W., Tanaka M. A study on time schemes for DRBEM analysis of elastic impact wave Comput Mech, 28 (2002), pp. 331-338, 10.1007/s00466-001-0297-4spa
dcterms.bibliographicCitationCarrer J., Mansur W. Alternative time-marching schemes for elastodynamic analysis with the domain boundary element method formulation Comput Mech, 34 (2004), pp. 387-399, 10.1007/s00466-004-0582-0spa
dcterms.bibliographicCitationOyarzún P., Loureiro F., Carrer J., Mansur W. A time-stepping scheme based on numerical green’s functions for the domain boundary element method: The exga-DBEM newmark approach Eng. Anal. Bound. Elem., 35 (2011), pp. 533-542, 10.1016/j.enganabound.2010.08.015spa
dcterms.bibliographicCitationNajarzadeh L., Movahedian B., Azhari M. Numerical solution of scalar wave equation by the modified radial integration boundary element method Eng Anal Bound Elem, 105 (2019), pp. 267-278, 10.1016/j.enganabound.2019.04.027 URL
dcterms.bibliographicCitationQu S., Li S., Chen H.-R., Qu Z. Radial integration boundary element method for acoustic eigenvalue problems Eng Anal Bound Elem, 37 (7) (2013), pp. 1043-1051, 10.1016/j.enganabound.2013.03.016spa
dcterms.bibliographicCitationAL-Jawary M.A., Wrobel L.C. Numerical solution of the two-dimensional Helmholtz equation with variable coefficients by the radial integration boundary integral and integro-differential equation methods Int J Comput Math, 89 (11) (2012), pp. 1463-1487, 10.1080/00207160.2012.667087spa
dcterms.bibliographicCitationCampos L.S., Loeffler C.F., Netto F.O., de Jesus dos Santos A. Testing the accomplishment of the radial integration method with the direct interpolation boundary element technique for solving Helmholtz problems Eng Anal Bound Elem, 110 (2020), pp. 16-23, 10.1016/j.enganabound.2019.09.022spa
dcterms.bibliographicCitationGandomkar M., Dibajian S., Farzin M., Hashemolhoseini S. An integration procedure for meshless methods using kriging interpolations Indian J Sci Technol, 6 (1) (2013), pp. 3859-3867spa
dcterms.bibliographicCitationWrobel L.C. Boundary element method, volume 1: Applications in thermo-fluids and acoustics, vol. 1 John Wiley & Sons (2002)spa
dcterms.bibliographicCitationKatsikadelis J.T. The boundary element method for engineers and scientists (2nd Ed.), Academic Press, Oxford (2016)spa
dcterms.bibliographicCitationSlak J., Kosec G. On generation of node distributions for meshless PDE discretizations SIAM J Sci Comput, 41 (2019), 10.1137/18M1231456spa
dcterms.bibliographicCitationGu Y., Wang Q., Lam K. A meshless local kriging method for large deformation analyses Comput Methods Appl Mech Engrg, 196 (9–12) (2007), pp. 1673-1684spa
dcterms.bibliographicCitationWang J., Liu G. On the optimal shape parameters of radial basis functions used for 2-D meshless methods Comput Methods Appl Mech Engrg, 191 (23–24) (2002), pp. 2611-2630spa
dcterms.bibliographicCitationPunzi A., Sommariva A., Vianello M. Meshless cubature over the disk using thin-plate splines J Comput Appl Math, 221 (2) (2008), pp. 430-436, 10.1016/ URL, Special Issue: Recent Progress in Spline and Wavelet Approximationspa
dcterms.bibliographicCitationNajarzadeh L., Movahedian B., Azhari M. Stability analysis of the thin plates with arbitrary shapes subjected to non-uniform stress fields using boundary element and radial integration methods Eng Anal Bound Elem, 87 (2018), pp. 111-121, 10.1016/j.enganabound.2017.11.010spa
dcterms.bibliographicCitationYoung D., Gu M., Fan C. The time-marching method of fundamental solutions for wave equations Eng Anal Bound Elem, 33 (12) (2009), pp. 1411-1425, 10.1016/j.enganabound.2009.05.008 URL, Special Issue on the Method of Fundamental Solutions in honour of Professor Michael Golbergspa
dcterms.bibliographicCitationLoeffler C., Mansur W., Barcelos H., Bulcão A. Solving Helmholtz problems with the boundary element method using direct radial basis function interpolation Eng Anal Bound Elem, 61 (2015), pp. 218-225, 10.1016/j.enganabound.2015.07.013spa
dcterms.bibliographicCitationUğurlu B. A dual reciprocity boundary element solution method for the free vibration analysis of fluid-coupled kirchhoff plates J Sound Vib, 340 (2015), pp. 190-210, 10.1016/j.jsv.2014.12.011spa
dcterms.bibliographicCitationChanthawara K., Kaennakham S., Toutip W. The numerical study and comparison of radial basis functions in applications of the dual reciprocity boundary element method to convection-diffusion problems 1705 (2016), Article 020029, 10.1063/1.4940277spa
dcterms.bibliographicCitationBarbosa J., Loeffler C., Lara L. The direct interpolation boundary element technique applied to three-dimensional scalar free vibration problems Eng Anal Bound Elem, 108 (2019), pp. 295-300, 10.1016/j.enganabound.2019.09.002spa
dc.subject.keywordsDomain integrationspa
dc.subject.keywordsBoundary element methodspa
dc.subject.keywordsRadial basis integration methodspa
dc.subject.keywordsDual reciprocity boundary element methodspa
dc.subject.keywordsScalar wave equationspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa

Files in this item


This item appears in the following Collection(s)

Show simple item record
Except where otherwise noted, this item's license is described as

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.