Mostrar el registro sencillo del ítem
Effects of orifice sizes for uncontrolled filling processes in water pipelines
dc.contributor.author | Aguirre-Mendoza, Andres M. | |
dc.contributor.author | Paternina-Verona, Duban A. | |
dc.contributor.author | Oyuela, Sebastian | |
dc.contributor.author | Coronado Hernández, Óscar Enrique | |
dc.contributor.author | Besharat M. | |
dc.contributor.author | Fuertes Miquel, Vicente S. | |
dc.contributor.author | Iglesias-Rey P.L. | |
dc.contributor.author | Ramos, Helena M. | |
dc.date.accessioned | 2022-05-09T12:09:45Z | |
dc.date.available | 2022-05-09T12:09:45Z | |
dc.date.issued | 2022-03-12 | |
dc.date.submitted | 2022-04-28 | |
dc.identifier.citation | Aguirre-Mendoza, A.M.; Paternina-Verona, D.A.; Oyuela, S.; Coronado-Hernández, O.E.; Besharat, M.; Fuertes-Miquel, V.S.; Iglesias-Rey, P.L.; Ramos, H.M. Effects of Orifice Sizes for Uncontrolled Filling Processes in Water Pipelines. Water 2022, 14, 888. https://doi.org/10.3390/w14060888 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10687 | |
dc.description.abstract | The sizing of air valves during the air expulsion phase in rapid filling processes is crucial for design purposes. Mathematical models have been developed to simulate the behaviour of air valves during filling processes for air expulsion, utilising 1D and 2D schemes. These transient events involve the presence of two fluids with different properties and behaviours (water and air). The effect of air valves under scenarios of controlled filling processes has been studied by various authors; however, the analysis of uncontrolled filling processes using air valves has not yet been considered. In this scenario, water columns reach high velocities, causing part of them to close air valves, which generates an additional peak in air pocket pressure patterns. In this research, a two-dimensional computational fluid dynamics model is developed in OpenFOAM software to simulate the studied situations. | spa |
dc.format.extent | 11 Páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Water 2022, 14, 888 | spa |
dc.title | Effects of orifice sizes for uncontrolled filling processes in water pipelines | spa |
dcterms.bibliographicCitation | AWWA. Air Release, Air/Vacuum Valves and Combination Air Valves (M51); American Water Works Association: Denver, CO, USA, 2016. | spa |
dcterms.bibliographicCitation | Fuertes, V.S. Hydraulic Transients with Entrapped Air Pockets. Ph.D. Thesis, Department of Hydraulic Engineering, Polytechnic University of Valencia, Editorial Universitat Politècnica de València, Valencia, Spain, 2001 | spa |
dcterms.bibliographicCitation | Ramezani, L.; Karney, B.; Malekpour, A. The challenge of air valves: A selective critical literature review. J. Water Resour. Plan. Manag. 2015, 141, 04015017 | spa |
dcterms.bibliographicCitation | McPherson, D.L.; Haeckler, C. Pipelines 2012: Innovations in Design, Construction, Operations, and Maintenance, Doing More with Less; American Society of Civil Engineers: Reston, VA, USA, 2012; pp. 983–989. | spa |
dcterms.bibliographicCitation | Liou, C.P.; Hunt, W.A. Filling of pipelines with undulating elevation profiles. J. Hydraul. Eng. 1996, 122, 534–539 | spa |
dcterms.bibliographicCitation | Izquierdo, J.; Fuertes, V.S.; Cabrera, E.; Iglesias, P.L.; Garcia-Serra, J. Pipeline start-up with entrapped air. J. Hydraul. Res. 1999, 37, 579–590. | spa |
dcterms.bibliographicCitation | Liu, D.; Zhou, L.; Karney, B.; Zhang, Q.; Ou, C. Rigid-plug elastic-water model for transient pipe flow with entrapped air pocket. J. Hydraul. Res. 2011, 49, 799–803. [ | spa |
dcterms.bibliographicCitation | Zhou, L.; Liu, D.; Karney, B. Investigation of hydraulic transients of two entrapped air pockets in a water pipeline. J. Hydraul. Eng. 2013, 139, 949–959. | spa |
dcterms.bibliographicCitation | Zhou, L.; Pan, T.; Wang, H.; Liu, D.; Wang, P. Rapid air expulsion through an orifice in a vertical water pipe. J. Hydraul. Res. 2019, 57, 142–149. | spa |
dcterms.bibliographicCitation | Besharat, M.; Tarinejad, R.; Aalami, M.T.; Ramos, H.M. Study of a compressed air vessel for controlling the pressure surge in water networks: CFD and experimental analysis. Water Resour. Manag. 2016, 30, 2687–2702. | spa |
dcterms.bibliographicCitation | Hurtado-Misal, A.D.; Hernández-Sanjuan, D.; Coronado-Hernández, O.E.; Espinoza-Román, H.; Fuertes-Miquel, V.S. Analysis of Sub-Atmospheric Pressures during Emptying of an Irregular Pipeline without an Air Valve Using a 2D CFD Model. Water 2021, 13, 2526 | spa |
dcterms.bibliographicCitation | Zhou, L.; Liu, D.; Ou, C. Simulation of flow transients in a water filling pipe containing entrapped air pocket with VOF model. Eng. Appl. Comput. Fluid Mech. 2011, 5, 127–140 | spa |
dcterms.bibliographicCitation | Martins, N.M.C.; Delgado, J.N.; Ramos, H.M.; Covas, D.I.C. Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model. J. Hydraul. Res. 2017, 55, 506–519 | spa |
dcterms.bibliographicCitation | Fuertes-Miquel, V.S.; López-Jiménez, P.A.; Martínez-Solano, F.J.; López-Patiño, G. Numerical modelling of pipelines with air pockets and air valves. Can. J. Civ. Eng. 2016, 43, 1052–1061. | spa |
dcterms.bibliographicCitation | Coronado-Hernández, O.E.; Besharat, M.; Fuertes-Miquel, V.S.; Ramos, H.M. Effect of a commercial air valve on the rapid filling of a single pipeline: A numerical and experimental analysis. Water 2019, 11, 1814. | spa |
dcterms.bibliographicCitation | Besharat, M.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Viseu, M.T.; Ramos, H.M. Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket. Urban Water J. 2018, 15, 769–779. | spa |
dcterms.bibliographicCitation | Besharat, M.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Viseu, M.T.; Ramos, H.M. Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage. J. Hydraul. Res. 2019, 58, 553–565 | spa |
dcterms.bibliographicCitation | Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Besharat, M.; Ramos, H.M. Subatmospheric pressure in a water draining pipeline with an air pocket. Urban Water J. 2018, 15, 346–352 | spa |
dcterms.bibliographicCitation | Aguirre-Mendoza, A.M.; Oyuela, S.; Espinoza-Román, H.G.; Coronado-Hernández, O.E. Fuertes-Miquel, V.S. Paternina-Verona, D.A. 2D CFD Modeling of Rapid Water Filling with Air Valves Using OpenFOAM. Water 2021, 13, 3104. | spa |
dcterms.bibliographicCitation | Fuertes-Miquel, V.S.; Coronado-Hernández, O.E.; Iglesias-Rey, P.L.; Mora-Meliá, D. Transient phenomena during the emptying process of a single pipe with water–air interaction. J. Hydraul. Eng. 2019, 57, 318–326. | spa |
dcterms.bibliographicCitation | Zhou, L.; Cao, Y.; Karney, B.; Bergant, A.; Tijsseling, A.S.; Liu, D.; Wang, P. Expulsion of Entrapped Air in a Rapidly Filling Horizontal Pipe. J. Hydraul. Eng. 2020, 146, 04020047 | spa |
dcterms.bibliographicCitation | Romero, G.; Fuertes-Miquel, V.S.; Coronado-Hernández, O.E.; Ponz-Carcelén, R.; Biel-Sanchis, F. Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations. Urban Water J. 2020, 17, 568–575 | spa |
dcterms.bibliographicCitation | Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605 | spa |
dcterms.bibliographicCitation | Wilcox, D.C. Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 1988, 26, 1299–1310 | spa |
dcterms.bibliographicCitation | Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. In Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion; 1983; pp. 96–116. | spa |
dcterms.bibliographicCitation | Jasak, H. OpenFOAM: Open source CFD in research and industry. Int. J. Nav. Archit. Ocean. Eng. 2009, 1, 89–94. | spa |
dcterms.bibliographicCitation | Jasak, H.; Jemcov, A.; Tukovic, Z. OpenFOAM: A C++ library for complex physics simulations. Int. Workshop Coupled Methods Numer. Dyn. 2007, 1000, 1–20. | spa |
dcterms.bibliographicCitation | Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Besharat, M.; Ramos, H.M. Experimental and numerical analysis of a water emptying pipeline using different air valves. Water 2017, 9, 98 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.doi | https://doi.org/10.3390/w14060888 | |
dc.subject.keywords | Air valves | spa |
dc.subject.keywords | Computational fluid dynamics | spa |
dc.subject.keywords | Pipeline filling | spa |
dc.subject.keywords | Hydraulic transients | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.