Mostrar el registro sencillo del ítem

dc.contributor.authorPena, Juan C.
dc.contributor.authorPacheco, Jose A.
dc.contributor.authorMarrugo Hernández, Andrés Guillermo
dc.date.accessioned2022-04-06T13:07:09Z
dc.date.available2022-04-06T13:07:09Z
dc.date.issued2021-10-01
dc.date.submitted2022-04-05
dc.identifier.citationPena, Juan & Pacheco, Jose & Marrugo, Andrés. (2021). Skin prick test wheal detection in 3D images via convolutional neural networks. 1-4. 10.1109/CI-IBBI54220.2021.9626125.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10658
dc.description.abstractThe skin prick test (SPT) is performed to diagnose different types of allergies. This medical procedure requires measuring the size of the skin wheals that appear when the test is performed. However, the manual measurement method is cumbersome and suffers from intraand inter-observer errors. Thus, multiple approaches have been developed to improve the reproducibility of the test. This work aims to improve part of the automated reading of the SPT to improve the reliability of the wheal detection procedure through the use of convolutional neural networks (CNN). Our proposal starts from the 3D images of the SPT from the arm of patients. They are processed for global surface removal, and then a CNN is trained to produce an output mask that detects the wheals. Finally, the contour of each wheal and its largest diameter is obtained. Encouraging results with mean difference 0.966 mm and mean coefficient of variation 7.29% show that the proposed method provides reliable automated skin wheal detection.spa
dc.format.extent5 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceIEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI) (2021)spa
dc.titleSkin prick test wheal detection in 3D images via convolutional neural networksspa
dcterms.bibliographicCitationH. Pijnenborg, L. Nilsson, and S. Dreborg, “Estimation of skin prick test reactions with a scanning program,” Allergy, vol. 51, no. 11, pp. 782–788, 1996spa
dcterms.bibliographicCitationB. Buyuktiryaki, U. Sahiner, E. Karabulut, O. Cavkaytar, A. Tuncer, and B. Sekerel, “Optimizing the use of a skin prick test device on children,” International archives of allergy and immunology, vol. 162, pp. 65–70, 06 2013spa
dcterms.bibliographicCitationL. Heinzerling, A. Mari, K. Bergmann, M. Bresciani, G. Burbach, U. Darsow, S. Durham, W. Fokkens, M. Gjomarkaj, T. Haahtela, A. Todo Bom, S. Wohrl, H. Maibach, and R. Lockey, “The skin ¨ prick test – european standards,” Clinical and translational allergy, vol. 3, p. 3, 02 2013spa
dcterms.bibliographicCitationG. Konstantinou, P. J. Bousquet, T. Zuberbier, and N. Papadopoulos, “The longest wheal diameter is the optimal measurement for the evaluation of skin prick tests,” International archives of allergy and immunology, vol. 151, pp. 343–5, 10 2009.spa
dcterms.bibliographicCitationS. Wohrl, K. Vigl, M. Binder, G. Stingl, and M. Prinz, “Automated ¨ measurement of skin prick tests: an advance towards exact calculation of wheal size.,” Experimental Dermatology, vol. 15, pp. 119–124, Feb. 2006spa
dcterms.bibliographicCitationX. Justo, I. D´ıaz, J. Gil, and G. Gastaminza, “Prick test: evolution towards automated reading,” Allergy, vol. 71, no. 8, pp. 1095–1102, 2016spa
dcterms.bibliographicCitationW. McCann and D. Ownby, “The reproducibility of allergy skin test scoring and interpretation by board-certified/board-eligible allergists,” Annals of allergy, asthma & immunology, vol. 89, pp. 368–71, 11 2002.spa
dcterms.bibliographicCitationO. Bulan, “Improved wheal detection from skin prick test images,” Proc. SPIE, vol. 9024, pp. 138 – 147, 2014.spa
dcterms.bibliographicCitationJ. Pineda, R. Vargas, L. A. Romero, J. Marrugo, J. Meneses, and A. G. Marrugo, “Robust automated reading of the skin prick test via 3d imaging and parametric surface fitting,” PLOS ONE, vol. 14, pp. 1–18, 10 2019.spa
dcterms.bibliographicCitationO. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention, pp. 234–241, Springer, 2015.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doi10.1109/CI-IBBI54220.2021.9626125
dc.subject.keywordsSPTspa
dc.subject.keywordsSkin prick testspa
dc.subject.keywordsWhealspa
dc.subject.keywords3D imagespa
dc.subject.keywordsConvolutional neural networkspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.