Mostrar el registro sencillo del ítem
Control temperature of the air conditioning system of a vessel from exergoeconomic analysis
dc.contributor.author | Barreto Ponton, Deibys | |
dc.contributor.author | Torres, Rosa | |
dc.contributor.author | Fajardo Cuadro, Juan Gabriel | |
dc.contributor.author | Gordon, Yimy | |
dc.contributor.author | Berrio, Julián | |
dc.contributor.author | Vidal, Carlos | |
dc.date.accessioned | 2022-04-01T21:05:40Z | |
dc.date.available | 2022-04-01T21:05:40Z | |
dc.date.issued | 2021-11-01 | |
dc.date.submitted | 2022-04-01 | |
dc.identifier.citation | Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition IMECE2021 November 1-5, 2021,Virtual, Online | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10657 | |
dc.description.abstract | In this work the air conditioning system of a 93 m long and 14 m wide vessel with 4081 refrigerated m3 distributed in 51 premises is studied. In which energy, exergetic and exergoeconomic analyzes were carried out for control temperatures between 20 and 27 ° C and 50% relative humidity, with outdoor air conditions of 35 ° C and 70% relative humidity. For the vessel, the thermal load is calculated with an adaptation of the ASHRAE CLDT / SCL / CLF (cooling load temperature difference/cooling load factor/solar cooling load factor) methodology and the ISO 7547 standard. Thermal load contributors taken into account for the study were heat transfer through walls, ceilings, and glass in addition to gains from people, lighting, and Appliances. Transmission through walls and ceilings represents 33% of the thermal load, followed by glass with 18% and power equipment with 15%, the last three sources of thermal load generation are Appliances (12%), people (12%) and lighting (10%). For each degree centigrade of the control temperature, the thermal load is reduced by 2.4 and 1.1%, respectively, as determined by the ASHRAE and ISO methodologies. Similarly, the destruction of exergy is reduced by 4.16% for each degree Celsius that the control temperature is increased. An indicator is proposed to calculate the cost of generation of cooling load per unit volume and exergy of the thermal load from which it is obtained that the higher the control temperature, the lower the value of the cost of generation of the cooling load. From the exergoeconomic analysis, it is highlighted that the destruction of exergy is the main factor in the increase in system costs. Increases in exergy destruction increase the value of the indicator of cooling load generation | spa |
dc.format.extent | 9 Páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition | spa |
dc.title | Control temperature of the air conditioning system of a vessel from exergoeconomic analysis | spa |
dcterms.bibliographicCitation | Last Name, First Name. The Name of the Book, 2019 | spa |
dcterms.bibliographicCitation | R. Lugo-Villalba, M. Álvarez Guerra y B. Sarria, «Calculation of marine air conditioning systems based on energy savings,» Ship Science & Technology, vol. 11, pp. 103-117, 2017. | spa |
dcterms.bibliographicCitation | I. Dincer y M. Rosen, Exergy: energy, environment, and sustainable development, segunda ed., Oxford: ELSEVIER, 2013. | spa |
dcterms.bibliographicCitation | V. Bianco, D. Righi, F. Scarpa y L. Tagliafico, «Modeling energy consumption and efficiency measures in the Italian hotel sector,» Energy and Buildings , vol. 149, pp. 329- 338, 2017. | spa |
dcterms.bibliographicCitation | M. Beccali, P. Finocchiaro, M. G. Ippolito, G. Leone, D. Panno y G. Zizzo, «Analysis of some renewable energy uses and demand side measures for hotels on small Mediterranean islands: a case study,» Energy, 2018. | spa |
dcterms.bibliographicCitation | B. Cristina, S. P. Corganati, M. Vio, G. Crespi, L. Prendin y M. Magagnini, «HVAC solutions for energy retrofitted hotel in Mediterranean area,» Energy Procedia, vol. 133, pp. 145-157, 2017. | spa |
dcterms.bibliographicCitation | G. Zhang, X. Li, W. Shi, B. Wang, Z. Li y Y. Cao, «Simulations of the energy performance of variable refrigerant flow system in representative operation modes for residential buildings in the hot summer and cold winter region in China,» Energy and Building, vol. 174, pp. 414- 427, 2018 | spa |
dcterms.bibliographicCitation | SNAME, Thermal Insulation Report, New York: SNAME, 1992. | spa |
dcterms.bibliographicCitation | G. H. Hart, P. Fulton y G. Cox, Ship Configurations and Insulation Design / Application, Sandiego: SNAME, 2008. | spa |
dcterms.bibliographicCitation | J. Fajardo, B. Sarria, M. Alvarez Guerra y O. Cruz, «Exergy study of air-conditioned space of a prototype scale of a river vessel room,» IMECE, vol. 16, 2016. | spa |
dcterms.bibliographicCitation | R. a. A. C. E. American Society of Heating, Handbook of Fundamentals, Atlanta: ASHRAE, 2005. | spa |
dcterms.bibliographicCitation | International Organization for Standarization, «ISO 7547 “Ship and marine technology of accommodation spaces – Desing conditions and basis of calculations”,» ISO, Ginebra, 2002. | spa |
dcterms.bibliographicCitation | J. Fajardo, B. Sarria y M. Alvarez Guerra, «Thermoeconomic Indicators of Air Conditioning in a River Ship to Change the Configuration of Their Thermal Insulation,» ASME International Mechanical Engineering Congress and Exposition, p. 10, 2015 | spa |
dcterms.bibliographicCitation | P. Sakulpipatsin, L. Itard, H. van der Kooi, E. Boelman y P. Luscuere, «An exergy application for analysis of buildings and HVAC systems,» Energy and Buildings, vol. 42, pp. 90-99, 2010. | spa |
dcterms.bibliographicCitation | Z. Du, X. Jin and B. Fan, "Evaluation of operation and control in HVAC (heating, ventilation and air conditioning) system using exergy analysis method," Energy, vol. 89, pp. 372-381, 2015 | spa |
dcterms.bibliographicCitation | P. Goncalves, A. Rodrigues Gaspar y M. Gameiro da Silva, «Energy and exergy-based ubducatirs for the energy performance assessment of a hotel building,» Energy and Buildings, vol. 52, pp. 181-188, 2012. | spa |
dcterms.bibliographicCitation | Cotecmar, «Corporación de Ciencia y Tecnología para el Desarrollo de la Industria Naval Marítima y Fluvial,» CMS Drupal, 03 11 2020. [En línea]. Available: https://www.cotecmar.com/. [Último acceso: 03 11 2020]. | spa |
dcterms.bibliographicCitation | CATERPILLAR, Marine Gen Set Package Performance Data C32 730 ekW/60 Hz/1800 RPM, USA: CATERPILLAR, 2013. | spa |
dcterms.bibliographicCitation | A. Bejan, G. Tsatsaronis y M. Moran, Thermal Desing and Optimazation, New York: John Wiley & Sons, 1996 | spa |
dcterms.bibliographicCitation | M. Saghafifar, A. Omar, S. Erfanmoghaddam y M. Gadalla, «Ther-economic analysis of recuperated maisotsenko bottoming cycle using triplex air saturaror: comparative analyses,» Applied Thermal Engineering, vol. 111, pp. 431-444, 2017. | spa |
dcterms.bibliographicCitation | I. S. Seddiek, M. Mosleh y A. A. Banawan, «Thermoeconomic approach for absortion air condition onboard high-seed crafts,» International Journal of naval Architecture and Ocean Engineering, vol. 4, pp. 460-476, 2012 | spa |
dcterms.bibliographicCitation | F. Mohammadkhani, N. Shokati, S. Mahmoudi, M. Yari y M. Rosen, «Exergoecnomic assessment and parametric study of a gas turbine-modular helium reactor combined with two organic rankine cycles,» Energy, vol. 65, pp. 533- 543, 2014. | spa |
dcterms.bibliographicCitation | IndexMundi, «Indexmundi,» Indexmundi, 15 08 2020. [En línea]. Available: https://www.indexmundi.com/es/precios-demercado/?mercancia=diesel. [Último acceso: 30 Julio 2020]. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.doi | https://doi.org/10.1115/IMECE2021-68569 | |
dc.subject.keywords | Thermal load | spa |
dc.subject.keywords | Air conditioning | spa |
dc.subject.keywords | Control temperature | spa |
dc.subject.keywords | Vessels | spa |
dc.subject.keywords | exergy | spa |
dc.subject.keywords | Thermoeconomic. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.