Mostrar el registro sencillo del ítem

dc.contributor.authorBarreto Ponton, Deibys
dc.contributor.authorTorres, Rosa
dc.contributor.authorFajardo Cuadro, Juan Gabriel
dc.contributor.authorGordon, Yimy
dc.contributor.authorBerrio, Julián
dc.contributor.authorVidal, Carlos
dc.date.accessioned2022-04-01T21:05:40Z
dc.date.available2022-04-01T21:05:40Z
dc.date.issued2021-11-01
dc.date.submitted2022-04-01
dc.identifier.citationProceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition IMECE2021 November 1-5, 2021,Virtual, Onlinespa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10657
dc.description.abstractIn this work the air conditioning system of a 93 m long and 14 m wide vessel with 4081 refrigerated m3 distributed in 51 premises is studied. In which energy, exergetic and exergoeconomic analyzes were carried out for control temperatures between 20 and 27 ° C and 50% relative humidity, with outdoor air conditions of 35 ° C and 70% relative humidity. For the vessel, the thermal load is calculated with an adaptation of the ASHRAE CLDT / SCL / CLF (cooling load temperature difference/cooling load factor/solar cooling load factor) methodology and the ISO 7547 standard. Thermal load contributors taken into account for the study were heat transfer through walls, ceilings, and glass in addition to gains from people, lighting, and Appliances. Transmission through walls and ceilings represents 33% of the thermal load, followed by glass with 18% and power equipment with 15%, the last three sources of thermal load generation are Appliances (12%), people (12%) and lighting (10%). For each degree centigrade of the control temperature, the thermal load is reduced by 2.4 and 1.1%, respectively, as determined by the ASHRAE and ISO methodologies. Similarly, the destruction of exergy is reduced by 4.16% for each degree Celsius that the control temperature is increased. An indicator is proposed to calculate the cost of generation of cooling load per unit volume and exergy of the thermal load from which it is obtained that the higher the control temperature, the lower the value of the cost of generation of the cooling load. From the exergoeconomic analysis, it is highlighted that the destruction of exergy is the main factor in the increase in system costs. Increases in exergy destruction increase the value of the indicator of cooling load generationspa
dc.format.extent9 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceProceedings of the ASME 2021 International Mechanical Engineering Congress and Expositionspa
dc.titleControl temperature of the air conditioning system of a vessel from exergoeconomic analysisspa
dcterms.bibliographicCitationLast Name, First Name. The Name of the Book, 2019spa
dcterms.bibliographicCitationR. Lugo-Villalba, M. Álvarez Guerra y B. Sarria, «Calculation of marine air conditioning systems based on energy savings,» Ship Science & Technology, vol. 11, pp. 103-117, 2017.spa
dcterms.bibliographicCitationI. Dincer y M. Rosen, Exergy: energy, environment, and sustainable development, segunda ed., Oxford: ELSEVIER, 2013.spa
dcterms.bibliographicCitationV. Bianco, D. Righi, F. Scarpa y L. Tagliafico, «Modeling energy consumption and efficiency measures in the Italian hotel sector,» Energy and Buildings , vol. 149, pp. 329- 338, 2017.spa
dcterms.bibliographicCitationM. Beccali, P. Finocchiaro, M. G. Ippolito, G. Leone, D. Panno y G. Zizzo, «Analysis of some renewable energy uses and demand side measures for hotels on small Mediterranean islands: a case study,» Energy, 2018.spa
dcterms.bibliographicCitationB. Cristina, S. P. Corganati, M. Vio, G. Crespi, L. Prendin y M. Magagnini, «HVAC solutions for energy retrofitted hotel in Mediterranean area,» Energy Procedia, vol. 133, pp. 145-157, 2017.spa
dcterms.bibliographicCitationG. Zhang, X. Li, W. Shi, B. Wang, Z. Li y Y. Cao, «Simulations of the energy performance of variable refrigerant flow system in representative operation modes for residential buildings in the hot summer and cold winter region in China,» Energy and Building, vol. 174, pp. 414- 427, 2018spa
dcterms.bibliographicCitationSNAME, Thermal Insulation Report, New York: SNAME, 1992.spa
dcterms.bibliographicCitationG. H. Hart, P. Fulton y G. Cox, Ship Configurations and Insulation Design / Application, Sandiego: SNAME, 2008.spa
dcterms.bibliographicCitationJ. Fajardo, B. Sarria, M. Alvarez Guerra y O. Cruz, «Exergy study of air-conditioned space of a prototype scale of a river vessel room,» IMECE, vol. 16, 2016.spa
dcterms.bibliographicCitationR. a. A. C. E. American Society of Heating, Handbook of Fundamentals, Atlanta: ASHRAE, 2005.spa
dcterms.bibliographicCitationInternational Organization for Standarization, «ISO 7547 “Ship and marine technology of accommodation spaces – Desing conditions and basis of calculations”,» ISO, Ginebra, 2002.spa
dcterms.bibliographicCitationJ. Fajardo, B. Sarria y M. Alvarez Guerra, «Thermoeconomic Indicators of Air Conditioning in a River Ship to Change the Configuration of Their Thermal Insulation,» ASME International Mechanical Engineering Congress and Exposition, p. 10, 2015spa
dcterms.bibliographicCitationP. Sakulpipatsin, L. Itard, H. van der Kooi, E. Boelman y P. Luscuere, «An exergy application for analysis of buildings and HVAC systems,» Energy and Buildings, vol. 42, pp. 90-99, 2010.spa
dcterms.bibliographicCitationZ. Du, X. Jin and B. Fan, "Evaluation of operation and control in HVAC (heating, ventilation and air conditioning) system using exergy analysis method," Energy, vol. 89, pp. 372-381, 2015spa
dcterms.bibliographicCitationP. Goncalves, A. Rodrigues Gaspar y M. Gameiro da Silva, «Energy and exergy-based ubducatirs for the energy performance assessment of a hotel building,» Energy and Buildings, vol. 52, pp. 181-188, 2012.spa
dcterms.bibliographicCitationCotecmar, «Corporación de Ciencia y Tecnología para el Desarrollo de la Industria Naval Marítima y Fluvial,» CMS Drupal, 03 11 2020. [En línea]. Available: https://www.cotecmar.com/. [Último acceso: 03 11 2020].spa
dcterms.bibliographicCitationCATERPILLAR, Marine Gen Set Package Performance Data C32 730 ekW/60 Hz/1800 RPM, USA: CATERPILLAR, 2013.spa
dcterms.bibliographicCitationA. Bejan, G. Tsatsaronis y M. Moran, Thermal Desing and Optimazation, New York: John Wiley & Sons, 1996spa
dcterms.bibliographicCitationM. Saghafifar, A. Omar, S. Erfanmoghaddam y M. Gadalla, «Ther-economic analysis of recuperated maisotsenko bottoming cycle using triplex air saturaror: comparative analyses,» Applied Thermal Engineering, vol. 111, pp. 431-444, 2017.spa
dcterms.bibliographicCitationI. S. Seddiek, M. Mosleh y A. A. Banawan, «Thermoeconomic approach for absortion air condition onboard high-seed crafts,» International Journal of naval Architecture and Ocean Engineering, vol. 4, pp. 460-476, 2012spa
dcterms.bibliographicCitationF. Mohammadkhani, N. Shokati, S. Mahmoudi, M. Yari y M. Rosen, «Exergoecnomic assessment and parametric study of a gas turbine-modular helium reactor combined with two organic rankine cycles,» Energy, vol. 65, pp. 533- 543, 2014.spa
dcterms.bibliographicCitationIndexMundi, «Indexmundi,» Indexmundi, 15 08 2020. [En línea]. Available: https://www.indexmundi.com/es/precios-demercado/?mercancia=diesel. [Último acceso: 30 Julio 2020].spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.1115/IMECE2021-68569
dc.subject.keywordsThermal loadspa
dc.subject.keywordsAir conditioningspa
dc.subject.keywordsControl temperaturespa
dc.subject.keywordsVesselsspa
dc.subject.keywordsexergyspa
dc.subject.keywordsThermoeconomic.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.