Mostrar el registro sencillo del ítem
Advanced exergetic analysis of preheat train of a crude oil distillation unit
dc.contributor.author | Fajardo Cuadro, Juan Gabriel | |
dc.contributor.author | Negrette, Camilo | |
dc.contributor.author | Yabrudy, Daniel | |
dc.contributor.author | Cardona, Camilo | |
dc.date.accessioned | 2022-04-01T21:04:34Z | |
dc.date.available | 2022-04-01T21:04:34Z | |
dc.date.issued | 2021-11-01 | |
dc.date.submitted | 2022-03-24 | |
dc.identifier.citation | ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)Volume 8B-20212021 Article number V08BT08A007ASME 2021 International Mechanical Engineering Congress and Exposition, IMECE 2021Virtual, Online1 November 2021 through 5 November 2021Code 176672 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10656 | |
dc.description.abstract | In this investigation, the conventional and advanced exergy analysis is used to obtain information about the conditions of the heat exchangers belonging to a crude oil distillation unit, previously to future studies to establish the most cost-efficient moments for the execution of maintenance activities in the exchangers. Conventional, unavoidable, avoidable, endogenous, and exogenous exergy destruction is calculated and the combinations between these last four terms. Mexogenous analysis is applied to individualize the relationships between the exchangers of the network. The results put the total exergy destruction at over 61.6 MW, being 63% avoidable. Five heat exchangers are considered critical because they concentrate the highest rates of exergy destruction, corresponding to 39% of the total exergy destruction in the network, this categorization allows focusing the improvement works on heat exchangers that will produce a substantial increase in the efficiency of the preheat train. Additionally, to evaluate the performance in a better way, the effect of unavoidable exergy destruction on performance measurement of exchangers through the exergy efficiency is studied, indicating that in some cases removing the unavoidable part can increase the second law efficiency by more than fifteen percentage points | spa |
dc.format.extent | 11 Páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | ASME 2008 International Mechanical Engineering Congress and Exposition, Vol. 10 (2021) | spa |
dc.title | Advanced exergetic analysis of preheat train of a crude oil distillation unit | spa |
dcterms.bibliographicCitation | Malinauskaite, J., Jouhara, H., Egilegor, B., Al-Mansour, F., Ahmad, L., Pusnik, M. Energy efficiency in the industrial sector in the EU, Slovenia, and Spain (Open Access) (2020) Energy, 208, art. no. 118398. | spa |
dcterms.bibliographicCitation | Dunlop, T. Mind the gap_ A social sciences review of energy efficiency (2019) Soc. Sci, p. 12. | spa |
dcterms.bibliographicCitation | Han, Y. (2020) Review: Energy efficiency evaluation of complex petrochemical industries, p. 15. | spa |
dcterms.bibliographicCitation | Li, H., Sun, R., Dong, K., Guo, R. Refining operations: Energy consumption and emission (2016) Journal of Computational and Theoretical Nanoscience, 13 (2), pp. 1497-1502 | spa |
dcterms.bibliographicCitation | Coletti, F., Macchietto, S. Predicting refinery energy losses due to fouling in heat exchangers (2009) Computer Aided Chemical Engineering, 27 (C), pp. 219-224. | spa |
dcterms.bibliographicCitation | Coletti, F., Macchietto, S., Polley, G.T. Effects of fouling on performance of retrofitted heat exchanger networks; a thermo- hydraulic based analysis (2010) Computer Aided Chemical Engineering, 28 (C), pp. 19-24. | spa |
dcterms.bibliographicCitation | Coletti, F., Macchietto, S., Polley, G.T. Effects of fouling on performance of retrofitted heat exchanger networks: A thermo-hydraulic based analysis (2011) Computers and Chemical Engineering, 35 (5), pp. 907-917. | spa |
dcterms.bibliographicCitation | Müller-Steinhagen, H., Malayeri, M.R., Watkinson, A.P. Heat exchanger fouling: Environmental impacts (2009) Heat Transfer Engineering, 30 (10-11), pp. 773-776. | spa |
dcterms.bibliographicCitation | Rivero, R. Application of the exergy concept in the petroleum refining and petrochemical industry (2002) Energy Conversion and Management, 43 (9-12), pp. 1199-1220. | spa |
dcterms.bibliographicCitation | Izyan, Z.N., Shuhaimi, M. Exergy analysis for fuel reduction strategies in crude distillation unit (2014) Energy, 66, pp. 891-897. | spa |
dcterms.bibliographicCitation | Tsatsaronis, G., Park, M.-H. On avoidable and unavoidable exergy destructions and investment costs in thermal systems (2002) Energy Conversion and Management, 43 (9-12), pp. 1259-1270. | spa |
dcterms.bibliographicCitation | Fajardo, J., Valle, H., Buelvas, A. Avoidable and Unavoidable Exergetic Destruction Analysis of a Nitric Acid Production Plant (2018) Volume 6B: Energy Pittsburgh, Pennsylvania, USA, Nov | spa |
dcterms.bibliographicCitation | Smaïli, F., Vassiliadis, V. S., Wilson, D. I. (2001) Mitigation of Fouling in Refinery Heat Exchanger Networks by Optimal Management of Cleaning, p. 19. Ma | spa |
dcterms.bibliographicCitation | Fard, M.M., Pourfayaz, F. Advanced exergy analysis of heat exchanger network in a complex natural gas refinery (2019) Journal of Cleaner Production, 206, pp. 670-687 | spa |
dcterms.bibliographicCitation | Rivero, R., Rendón, C., Gallegos, S. Exergy and exergoeconomic analysis of a crude oil combined distillation unit (2004) Energy, 29 (12-15 SPEC. ISS.), pp. 1909-1927 | spa |
dcterms.bibliographicCitation | Wang, L., Yang, Y., Morosuk, T., Tsatsaronis, G. Advanced thermodynamic analysis and evaluation of a supercritical power plant (Open Access) (2012) Energies, 5 (6), pp. 1850-1863 | spa |
dcterms.bibliographicCitation | Fajardo, J., Barreto, D., Sarria, B., Yabrudy, D., Negrete, C., Cardona, C. (2020) Efficiency centered maintenance of preheat train of a crude oil distillation unit, p. 12. | spa |
dcterms.bibliographicCitation | Polley, G.T., Wilson, D.I., Yeap, B.L., Pugh, S.J. Evaluation of laboratory crude oil threshold fouling data for application to refinery pre-heat trains (2002) Applied Thermal Engineering, 22 (7), pp. 777-788. | spa |
dcterms.bibliographicCitation | (1997) Technical Data Book-Petroleum Refining. Cited 423 times. American Petroleum Institute, 6th ed. Washington, D.C. United States: API Publishing Services | spa |
dcterms.bibliographicCitation | Das, D.K., Nerella, S., Kulkarni, D. Thermal properties of petroleum and gas-to-liquid products (2007) Petroleum Science and Technology, 25 (4), pp. 415-425 | spa |
dcterms.bibliographicCitation | E. U. Schlünder, Ed., Heat exchanger design handbook, 1st ed., vol. 1. Düsseldorf: Hemisphere Publishing Corporation, 1983 | spa |
dcterms.bibliographicCitation | C. Yan, L. Lv, S. Wei, A. Eslamimanesh, and W. Shen, “Application of retrofitted design and optimization framework based on the exergy analysis to a crude oil distillation plant,” Appl. Therm. Eng., vol. 154, pp. 637–649, May 2019. | spa |
dcterms.bibliographicCitation | A. Bejan, G. Tsatsaronis, and M. Moran, Thermal Design and Optimization, 1st ed. New York, United States: John Wiley & Sons, Inc, 1996. | spa |
dcterms.bibliographicCitation | Tsatsaronis and T. Morosuk, “Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas,” Energy, vol. 35, no. 2, pp. 820–829, Feb. 2010. | spa |
dcterms.bibliographicCitation | G. Tsatsaronis, S. O. Kelly, and T. V. Morosuk, “Endogenous and Exogenous Exergy Destruction in Thermal Systems,” in Advanced Energy Systems, Chicago, Illinois, USA, pp. 311–317, Jan. 2006. | spa |
dcterms.bibliographicCitation | S. Kelly, G. Tsatsaronis, and T. Morosuk, “Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts,” Energy, vol. 34, no. 3, pp. 384–391, Mar. 2009. | spa |
dcterms.bibliographicCitation | T. Morosuk and G. Tsatsaronis, “Comparative evaluation of LNG – based cogeneration systems using advanced exergetic analysis,” Energy, vol. 36, no. 6, pp. 3771–3778, Jun. 2011. | spa |
dcterms.bibliographicCitation | A. Vatani, M. Mehrpooya, and A. Palizdar, “Advanced exergetic analysis of five natural gas liquefaction processes,” Energy Convers. Manag., vol. 78, pp. 720–737, Feb. 2014. | spa |
dcterms.bibliographicCitation | G. D. Vučković, M. M. Stojiljković, and M. V. Vukić, “First and second level of exergy destruction splitting in advanced exergy analysis for an existing boiler,” Energy Convers. Manag., vol. 104, pp. 8–16, Nov. 2015. | spa |
dcterms.bibliographicCitation | O. Balli, “Advanced exergy analyses to evaluate the performance of a military aircraft turbojet engine (TJE) with afterburner system: Splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous,” Appl. Therm. Eng., vol. 111, pp. 152–169, Jan. 2017 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.doi | 10.1115/IMECE2021-69268 | |
dc.subject.keywords | Advanced Exergy Analysis | spa |
dc.subject.keywords | Crude Oil Distillation Unit | spa |
dc.subject.keywords | Exergy destruction | spa |
dc.subject.keywords | Heat Exchanger | spa |
dc.subject.keywords | Preheat Train | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.