Mostrar el registro sencillo del ítem

dc.contributor.authorPupo-Roncallo, O.
dc.contributor.authorCampillo Jiménez, Javier Eduardo
dc.contributor.authorIngham, D.
dc.contributor.authorMa, L.
dc.contributor.authorPourkashanian, M.
dc.coverage.spatialColombia
dc.date.accessioned2022-03-24T15:55:09Z
dc.date.available2022-03-24T15:55:09Z
dc.date.issued2021-04-20
dc.date.submitted2022-03-23
dc.identifier.citationPupo-Roncallo, O., Campillo, J., Ingham, D., Ma, L., & Pourkashanian, M. (2021). The role of energy storage and cross-border interconnections for increasing the flexibility of future power systems: The case of Colombia. Smart Energy. 2. 100016. 10.1016/j.segy.2021.100016.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10636
dc.description.abstractThe rapid expansion of renewable energy technologies in the electricity sector introduces new significant challenges for power systems due to their high intermittency. Therefore, more flexibility is needed to ensure that the system can operate reliably and cost-effectively with large shares of variable renewable energy sources (RES). Electricity energy storage and cross-border interconnections are considered two key components for allowing further integration of these sources. Therefore, the aim of this study is to analyse the techno-economic effects of grid-scale electricity storage and interconnections in the integration of variable RES by using the power system of Colombia as a case study. The EnergyPLAN tool was used for building the reference system model and future scenarios. Initially, the technical impacts of electricity storage and interconnections in the power system were examined. Successively, a multi-objective evolutionary algorithm (MOEA) was applied to perform a techno-economic optimisation and identify a set of optimal configurations. The results evidenced that increasing levels of storage and interconnections could allow further penetration of variable RES, achieving total annual electricity production levels of approximately 96.8%. Further, significant reductions in both the fuel consumption and CO2 emissions might permit an emission factor of the power sector of approximately 26.5 gCO2e/kWhspa
dc.format.extent33 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceSmart Energy, vol. 2, (2021)spa
dc.titleThe role of energy storage and cross-border interconnections for increasing the flexibility of future power systems : the case of Colombiaspa
dcterms.bibliographicCitationHaas J, Cebulla F, Cao K, Nowak W, Palma-Behnke R, Rahmann C, et al. Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review. Renew Sustain Energy Rev 2017;80:603–19. https://doi.org/https://doi.org/10.1016/j.rser.2017.05.201.spa
dcterms.bibliographicCitationCebulla F, Haas J, Eichman J, Nowak W, Mancarella P. How much electrical energy storage do we need? A synthesis for the U.S., Europe, and Germany. J Clean Prod 2018;181:449–59. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.01.144.spa
dcterms.bibliographicCitationHaas J, Cebulla F, Nowak W, Rahmann C, Palma-Behnke R. A multi-service approach for planning the optimal mix of energy storage technologies in a fully-renewable power supply. Energy Convers Manag 2018;178:355–68. https://doi.org/https://doi.org/10.1016/j.enconman.2018.09.087.spa
dcterms.bibliographicCitationMathiesen BV, Drysdale D, Chozas J, Ridjan I, Conolly D, Lund H. A review of smart energy projects & smart energy state-of-the-art. Aalborg, Denmark: Department of planning, Aalborg university; 2015spa
dcterms.bibliographicCitationLund H, Østergaard PA, Connolly D, Ridjan I, Mathiesen BV, Hvelplund F, et al. Energy Storage and Smart Energy Systems. Int J Sustain Energy Plan Manag 2016;11:3–14. https://doi.org/10.5278/ijsepm.2016.11.2spa
dcterms.bibliographicCitationLund H. Renewable energy systems: A smart energy systems approach to the choice and modeling of 100% renewable solutions. 2nd ed. Amsterdam: Beaverton: Ringgold Inc.; 2014spa
dcterms.bibliographicCitationCastillo A, Gayme DF. Grid-scale energy storage applications in renewable energy integration: A survey. Energy Convers Manag 2014;87:885–94. https://doi.org/https://doi.org/10.1016/j.enconman.2014.07.063.spa
dcterms.bibliographicCitationMathiesen B V, Lund H, Connolly D, Wenzel H, Østergaard PA, Möller B, et al. Smart Energy Systems for coherent 100% renewable energy and transport solutions. Appl Energy 2015;145:139–54. https://doi.org/https://doi.org/10.1016/j.apenergy.2015.01.075spa
dcterms.bibliographicCitationInternational Finance Corporation (IFC). Energy Storage Trends and Opportunities in Emerging Markets. Boulder, USA: 2017.spa
dcterms.bibliographicCitationOchoa C, Dyner I, Franco CJ. Simulating power integration in Latin America to assess challenges, opportunities, and threats. Energy Policy 2013;61:267–73. https://doi.org/https://doi.org/10.1016/j.enpol.2013.07.029.spa
dcterms.bibliographicCitationGuezgouz M, Jurasz J, Bekkouche B, Ma T, Javed MS, Kies A. Optimal hybrid pumped hydro-battery storage scheme for off-grid renewable energy systems. Energy Convers Manag 2019;199:112046.spa
dcterms.bibliographicCitationEl-Bidairi KS, Nguyen HD, Mahmoud TS, Jayasinghe SDG, Guerrero JM. Optimal sizing of Battery Energy Storage Systems for dynamic frequency control in an islanded microgrid: A case study of Flinders Island, Australia. Energy 2020;195:117059. https://doi.org/https://doi.org/10.1016/j.energy.2020.117059.spa
dcterms.bibliographicCitationAlves M, Segurado R, Costa M. Increasing the penetration of renewable energy sources in isolated islands through the interconnection of their power systems. The case of Pico and Faial islands, Azores. Energy 2019;182:502–10. https://doi.org/https://doi.org/10.1016/j.energy.2019.06.081.spa
dcterms.bibliographicCitationEdmunds RK, Cockerill TT, Foxon TJ, Ingham DB, Pourkashanian M. Technical benefits of energy storage and electricity interconnections in future British power systems. Energy 2014;70:577–87. https://doi.org/10.1016/j.energy.2014.04.041.spa
dcterms.bibliographicCitationArciniegas LM, Hittinger E. Tradeoffs between revenue and emissions in energy storage operation. Energy 2018;143:1–11. https://doi.org/https://doi.org/10.1016/j.energy.2017.10.123.spa
dcterms.bibliographicCitationHeadley AJ, Copp DA. Energy storage sizing for grid compatibility of intermittent renewable resources: A California case study. Energy 2020;198:117310. https://doi.org/https://doi.org/10.1016/j.energy.2020.117310.spa
dcterms.bibliographicCitationBussar C, Stöcker P, Cai Z, Moraes Jr. L, Magnor D, Wiernes P, et al. Large-scale integration of renewable energies and impact on storage demand in a European renewable power system of 2050—Sensitivity study. J Energy Storage 2016;6:1–10. https://doi.org/https://doi.org/10.1016/j.est.2016.02.004spa
dcterms.bibliographicCitationAndresen GB, Rodriguez RA, Becker S, Greiner M. The potential for arbitrage of wind and solar surplus power in Denmark. Energy 2014;76:49–58. https://doi.org/https://doi.org/10.1016/j.energy.2014.03.033.spa
dcterms.bibliographicCitationLimpens G, Jeanmart H. Electricity storage needs for the energy transition: An EROI based analysis illustrated by the case of Belgium. Energy 2018;152:960–73. https://doi.org/https://doi.org/10.1016/j.energy.2018.03.180.spa
dcterms.bibliographicCitationConnolly D, Lund H, Mathiesen B V, Pican E, Leahy M. The technical and economic implications of integrating fluctuating renewable energy using energy storage. Renew Energy 2012;43:47–60. https://doi.org/https://doi.org/10.1016/j.renene.2011.11.003spa
dcterms.bibliographicCitationLopez J. Efecto del almacenamiento de energía en el mercado mayorista eléctrico Colombiano. Universidad Nacional de Colombia, 2013.spa
dcterms.bibliographicCitationOchoa C, van Ackere A. Does size matter? Simulating electricity market coupling between Colombia and Ecuador. Renew Sustain Energy Rev 2015;50:1108–24. https://doi.org/https://doi.org/10.1016/j.rser.2015.05.054spa
dcterms.bibliographicCitationCabrera P, Lund H, Thellufsen JZ, Sorknæs P. The MATLAB Toolbox for EnergyPLAN: A tool to extend energy planning studies. Sci Comput Program 2020;191:102405. https://doi.org/https://doi.org/10.1016/j.scico.2020.102405spa
dcterms.bibliographicCitationBatas Bjelić I, Rajaković N. Simulation-based optimization of sustainable national energy systems. Energy 2015;91:1087–98. https://doi.org/https://doi.org/10.1016/j.energy.2015.09.006spa
dcterms.bibliographicCitationPrina MG, Cozzini M, Garegnani G, Manzolini G, Moser D, Filippi Oberegger U, et al. Multi-objective optimization algorithm coupled to EnergyPLAN software: The EPLANopt model. Energy 2018;149:213–21. https://doi.org/https://doi.org/10.1016/j.energy.2018.02.050spa
dcterms.bibliographicCitationMahbub MS, Cozzini M, Østergaard PA, Alberti F. Combining multi-objective evolutionary algorithms and descriptive analytical modelling in energy scenario design. Appl Energy 2016;164:140–51. https://doi.org/https://doi.org/10.1016/j.apenergy.2015.11.042spa
dcterms.bibliographicCitationPupo-Roncallo O, Campillo J, Ingham D, Hughes K, Pourkashanian M. Large scale integration of renewable energy sources (RES) in the future Colombian energy system. Energy 2019;186:115805. https://doi.org/10.1016/j.energy.2019.07.135spa
dcterms.bibliographicCitationColombian Electrical Information System (SIEL) 2017. http://www.siel.gov.co/ (accessed July 24, 2018).spa
dcterms.bibliographicCitationGarcia-Freites S, Welfle A, Lea-Langton A, Gilbert P, Thornley P. The potential of coffee stems gasification to provide bioenergy for coffee farms: a case study in the Colombian coffee sector. Biomass Convers Biorefinery 2019. https://doi.org/10.1007/s13399-019-00480-8.spa
dcterms.bibliographicCitationGómez-Navarro T, Ribó-Pérez D. Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renew Sustain Energy Rev 2018;90:131–41. https://doi.org/10.1016/J.RSER.2018.03.015spa
dcterms.bibliographicCitationLambertini G. Los Convenios bilaterales que soportan las interconexiones energéticas en América del Sur. ENERLAC Rev Energía Latinoamérica y El Caribe 2018;1:126–45.spa
dcterms.bibliographicCitationPupo-Roncallo O, Campillo J, Ingham D, Hughes K, Pourkashanian M. Renewable energy production and demand dataset for the energy system of Colombia. Data Br 2020:105084. https://doi.org/https://doi.org/10.1016/j.dib.2019.105084.spa
dcterms.bibliographicCitationCAF, (CIER) C de IER. Nuevas oportunidades de interconexión eléctrica en América Latina. Bogotá D.C., Colombia: CAF; 2012spa
dcterms.bibliographicCitationXM. Portal BI - Gestión Información Inteligente 2020. http://informacioninteligente10.xm.com.co/pages/default.aspx (accessed March 30, 2020)spa
dcterms.bibliographicCitationRingkjøb H-K, Haugan PM, Solbrekke IM. A review of modelling tools for energy and electricity systems with large shares of variable renewables. Renew Sustain Energy Rev 2018;96:440–59. https://doi.org/https://doi.org/10.1016/j.rser.2018.08.002.spa
dcterms.bibliographicCitationLund H, Thellufsen JZ, Østergaard PA, Sorknæs P, Skov IR, Mathiesen BV. EnergyPLAN – Advanced analysis of smart energy systems. Smart Energy 2021;1:100007. https://doi.org/10.1016/j.segy.2021.100007spa
dcterms.bibliographicCitationLund H, Thellufsen JZ. EnergyPLAN - Advanced Energy Systems Analysis Computer Model (Version 15.1) 2020. https://doi.org/10.5281/zenodo.4017214.spa
dcterms.bibliographicCitationConnolly D. Finding and Inputting Data into the EnergyPLAN Tool. Aalborg: 2015.spa
dcterms.bibliographicCitationPupo-Roncallo O, Ingham D, Pourkashanian M. Techno-economic benefits of grid-scale energy storage in future energy systems. Energy Reports 2020;6:242–8. https://doi.org/https://doi.org/10.1016/j.egyr.2020.03.030.spa
dcterms.bibliographicCitationIPCC. IPCC guidelines for national greenhouse gas inventories, Intergovernmental Panel on Climate Change (IPCC), Task Force on National Greenhouse Gas Inventories (TFI) n.d. https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (accessed September 28, 2018).spa
dcterms.bibliographicCitationGonzalez-Salazar M, Venturini M, Poganietz W-R, Finkenrath M, Acevedo H, Kirsten T. Bioenergy Technology Roadmap for Colombia. 2014. https://doi.org/10.15160/unife/eprintsunife/774.spa
dcterms.bibliographicCitationCalderón S, Alvarez A, Loboguerrero A, Arango S, Calvin K, Kober T, et al. Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets. Energy Econ 2016;56:575–86. https://doi.org/https://doi.org/10.1016/j.eneco.2015.05.010.spa
dcterms.bibliographicCitationInternational Renewable Energy Agency (IRENA). Colombia power system flexibility assessment. Abu Dhabi: IRENA; 2018.spa
dcterms.bibliographicCitationMining and Energy Planning Unit (UPME). Actualización y Revisión de los Balances Energéticos Nacionales de Colombia 1975–2009. Tomo I - Balances Energéticos Nacionales. Bogota: UPME; 2011spa
dcterms.bibliographicCitationMining and Energy Planning Unit (UPME). Plan de Expansión de Referencia Generación Transmisión 2017-2031. Bogota: 2017spa
dcterms.bibliographicCitationEnvironment and Sustainable Development Ministry (MADS). Upstream analytical work to support development of policy options for mid- and long-term mitigation objectives in Colombia. Bogota: 2016.spa
dcterms.bibliographicCitationBalza L, Gischler C, Janson N, Miller S, Servetti G. Potential for Energy Storage in Combination with Renewable Energy in Latin America and the Caribbean. Washington,spa
dcterms.bibliographicCitationWilson IAG, McGregor PG, Hall PJ. Energy storage in the UK electrical network: Estimation of the scale and review of technology options. Energy Policy 2010;38:4099– 106. https://doi.org/https://doi.org/10.1016/j.enpol.2010.03.036.spa
dcterms.bibliographicCitationAghahosseini A, Bogdanov D, Barbosa LSNS, Breyer C. Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030. Renew Sustain Energy Rev 2019;105:187–205. https://doi.org/10.1016/j.rser.2019.01.046spa
dcterms.bibliographicCitationBelderbos A, Virag A, D’haeseleer W, Delarue E. Considerations on the need for electricity storage requirements: Power versus energy. Energy Convers Manag 2017;143:137–49. https://doi.org/https://doi.org/10.1016/j.enconman.2017.03.074spa
dcterms.bibliographicCitationDenholm P, Mai T. Timescales of energy storage needed for reducing renewable energy curtailment. Renew Energy 2019;130:388–99. https://doi.org/https://doi.org/10.1016/j.renene.2018.06.079spa
dcterms.bibliographicCitationLund H, Salgi G. The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Convers Manag 2009;50:1172–9. https://doi.org/https://doi.org/10.1016/j.enconman.2009.01.032.spa
dcterms.bibliographicCitationVictoria M, Zhu K, Brown T, Andresen GB, Greiner M. The role of storage technologies throughout the decarbonisation of the sector-coupled European energy system. Energy Convers Manag 2019;201:111977. https://doi.org/https://doi.org/10.1016/j.enconman.2019.111977.spa
dcterms.bibliographicCitationIRENA. Electricity storage and renewables: Costs and markets to 2030. Abu Dhabi: IRENA; 2017. https://doi.org/ISBN 978-92-9260-038-9 (PDF)spa
dcterms.bibliographicCitationJoint Research Centre. Energy Technology Reference Indicator projections for 2010- 2050. Petten, the Netherlands: 2014. https://doi.org/10.2790/057687.spa
dcterms.bibliographicCitationThomson Reuters Point Carbon. The MSR: Impact on market balance and prices. Oslo, Norway: 2014.spa
dcterms.bibliographicCitationPupo-Roncallo O, Ingham D, Pourkashanian M. MOEA Eplan (Multi-objective evolutionary algorithm optimisation for EnergyPLAN) 2020. https://doi.org/10.5281/ZENODO.3770479.spa
dcterms.bibliographicCitationThe MathWorks Inc. MATLAB, 2017 version 9.2 2017spa
dcterms.bibliographicCitationDeb K, Kalyanmoy D. Multi-Objective Optimization Using Evolutionary Algorithms. USA: John Wiley & Sons, Inc.; 2001.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.segy.2021.100016
dc.subject.keywordsElectricity energy storagespa
dc.subject.keywordsInterconnectionsspa
dc.subject.keywordsRESspa
dc.subject.keywordsEnergyPLANspa
dc.subject.keywordsColombiaspa
dc.subject.keywordsoptimisationspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.