Mostrar el registro sencillo del ítem

dc.contributor.authorMontoya Giraldo, Oscar Danilo
dc.contributor.authorGrisales-Noreña, Luis Fernando
dc.contributor.authorPerea-Moreno, Alberto-Jesus
dc.date.accessioned2022-03-18T18:36:07Z
dc.date.available2022-03-18T18:36:07Z
dc.date.issued2021-12-09
dc.date.submitted2022-03-18
dc.identifier.citationMontoya, O.D.; GrisalesNoreña, L.F.; Perea-Moreno, A.-J. Optimal Investments in PV Sources for Grid-Connected Distribution Networks: An Application of the Discrete–Continuous Genetic Algorithm. Sustainability 2021, 13, 13633. https://doi.org/10.3390/su132413633spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10627
dc.description.abstractThe problem of the optimal siting and sizing of photovoltaic (PV) sources in grid connected distribution networks is addressed in this study with a master–slave optimization approach. In the master optimization stage, a discrete–continuous version of the Chu and Beasley genetic algorithm (DCCBGA) is employed, which defines the optimal locations and sizes for the PV sources. In the slave stage, the successive approximation method is used to evaluate the fitness function value for each individual provided by the master stage. The objective function simultaneously minimizes the energy purchasing costs in the substation bus, and the investment and operating costs for PV sources for a planning period of 20 years. The numerical results of the IEEE 33-bus and 69-bus systems demonstrate that with the proposed optimization methodology, it is possible to eliminate about 27% of the annual operation costs in both systems with optimal locations for the three PV sources. After 100 consecutive evaluations of the DCCBGA, it was observed that 44% of the solutions found by the IEEE 33-bus system were better than those found by the BONMIN solver in the General Algebraic Modeling System (GAMS optimization package). In the case of the IEEE 69-bus system, the DCCBGA ensured, with 55% probability, that solutions with better objective function values than the mean solution value of the GAMS were found. Power generation curves for the slack source confirmed that the optimal siting and sizing of PV sources create the duck curve for the power required to the main grid; in addition, the voltage profile curves for both systems show that voltage regulation was always maintained between ±10% in all the time periods under analysis. All the numerical validations were carried out in the MATLAB programming environment with the GAMS optimization package.spa
dc.format.extent19 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceSustainability 2021, 13, 13633.spa
dc.titleOptimal investments in PV sources for grid-connected distribution networks: An application of the discrete–continuous genetic algorithmspa
dcterms.bibliographicCitationTully, S. The Human Right to Access Electricity. Electr. J. 2006, 19, 30–39. doi:10.1016/j.tej.2006.02.003spa
dcterms.bibliographicCitationLofquist, L. Is there a universal human right to electricity? Int. J. Hum. Rights 2019, 24, 711–723. doi:10.1080/13642987.2019.1671355spa
dcterms.bibliographicCitationAbdallah, L.; El-Shennawy, T. Reducing Carbon Dioxide Emissions from Electricity Sector Using Smart Electric Grid Applications. J. Eng. 2013, 2013, 845051. doi:10.1155/2013/845051.spa
dcterms.bibliographicCitationJursová, S.; Burchart-Korol, D.; Pustˇejovská, P.; Korol, J.; Blaut, A. Greenhouse Gas Emission Assessment from Electricity Production in the Czech Republic. Environments 2018, 5, 17. doi:10.3390/environments5010017.spa
dcterms.bibliographicCitationAbdmouleh, Z.; Alammari, R.A.; Gastli, A. Review of policies encouraging renewable energy integration & best practices. Renew. Sustain. Energy Rev. 2015, 45, 249–262. doi:10.1016/j.rser.2015.01.035spa
dcterms.bibliographicCitationBraun, G.W. State policies for collaborative local renewable integration. Electr. J. 2020, 33, 106691. doi:10.1016/j.tej.2019.106691.spa
dcterms.bibliographicCitationMuhammad, M.A.; Mokhlis, H.; Naidu, K.; Amin, A.; Franco, J.F.; Othman, M. Distribution Network Planning Enhancement via Network Reconfiguration and DG Integration Using Dataset Approach and Water Cycle Algorithm. J. Mod. Power Syst. Clean Energy 2020, 8, 86–93. doi:10.35833/mpce.2018.000503.spa
dcterms.bibliographicCitationHernandez, J.A.; Arredondo, C.A.; Rodriguez, D.J. Analysis of the law for the integration of non-conventional renewable energy sources (law 1715 of 2014) and its complementary decrees in Colombia. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019. doi:10.1109/pvsc40753.2019.8981233.spa
dcterms.bibliographicCitationCongreso de Colombia. Ley No. 1715 del 13 de Mayo de 2014; UPME: Medellin, Colombia, 2014; p. 26spa
dcterms.bibliographicCitationLeón-Vargas, F.; García-Jaramillo, M.; Krejci, E. Pre-feasibility of wind and solar systems for residential self-sufficiency in four urban locations of Colombia: Implication of new incentives included in Law 1715. Renew. Energy 2019, 130, 1082–1091. doi:10.1016/j.renene.2018.06.087.spa
dcterms.bibliographicCitationLópez, A.R.; Krumm, A.; Schattenhofer, L.; Burandt, T.; Montoya, F.C.; Oberländer, N.; Oei, P.Y. Solar PV generation in Colombia— A qualitative and quantitative approach to analyze the potential of solar energy market. Renew. Energy 2020, 148, 1266–1279. doi:10.1016/j.renene.2019.10.066spa
dcterms.bibliographicCitationIPSE. Boletín de Datos IPSE Septiembre 2021; IPSE: Bogota, Colombia, 2021. 13. Delgado, R.; Wild, T.B.; Arguello, R.; Clarke, L.; Romero, G. Options for Colspa
dcterms.bibliographicCitationDelgado, R.; Wild, T.B.; Arguello, R.; Clarke, L.; Romero, G. Options for Colombia's mid-century deep decarbonization strategy. Energy Strategy Rev. 2020, 32, 100525. doi:10.1016/j.esr.2020.100525.spa
dcterms.bibliographicCitationColmenares-Quintero, R.F.; Maestre-Gongora, G.P.; Pacheco-Moreno, L.J.; Rojas, N.; Stansfield, K.E.; Colmenares-Quintero, J.C. Analysis of the energy service in non-interconnected zones of Colombia using business intelligence. Cogent Eng. 2021, 8, 1907970. doi:10.1080/23311916.2021.1907970.spa
dcterms.bibliographicCitationPaz-Rodríguez, A.; Castro-Ordoñez, J.F.; Montoya, O.D.; Giral-Ramírez, D.A. Optimal Integration of Photovoltaic Sources in Distribution Networks for Daily Energy Losses Minimization Using the Vortex Search Algorithm. Appl. Sci. 2021, 11, 4418. doi:10.3390/app11104418spa
dcterms.bibliographicCitationValencia, A.; Hincapie, R.A.; Gallego, R.A. Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium–low voltage distribution networks. J. Energy Storage 2021, 34, 102158. doi:10.1016/j.est.2020.102158.spa
dcterms.bibliographicCitationGrisales-Noreña, L.; Montoya, D.G.; Ramos-Paja, C. Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques. Energies 2018, 11, 1018. doi:10.3390/en11041018spa
dcterms.bibliographicCitationHelmi, A.M.; Carli, R.; Dotoli, M.; Ramadan, H.S. Efficient and Sustainable Reconfiguration of Distribution Networks via Metaheuristic Optimization. IEEE Trans. Autom. Sci. Eng. 2021, early access. doi:10.1109/tase.2021.3072862spa
dcterms.bibliographicCitationCastiblanco-Pérez, C.M.; Toro-Rodríguez, D.E.; Montoya, O.D.; Giral-Ramírez, D.A. Optimal Placement and Sizing of DSTATCOM in Radial and Meshed Distribution Networks Using a Discrete-Continuous Version of the Genetic Algorithm. Electronics 2021, 10, 1452. doi:10.3390/electronics10121452.spa
dcterms.bibliographicCitationBhumkittipich, K.; Phuangpornpitak, W. Optimal Placement and Sizing of Distributed Generation for Power Loss Reduction Using Particle Swarm Optimization. Energy Procedia 2013, 34, 307–317. doi:10.1016/j.egypro.2013.06.759spa
dcterms.bibliographicCitationAyodele, T.R.; Ogunjuyigbe, A.S.O.; Akinola, O.O. Optimal Location, Sizing, and Appropriate Technology Selection of Distributed Generators for Minimizing Power Loss Using Genetic Algorithm. J. Renew. Energy 2015, 2015, 832917. doi:10.1155/2015/832917spa
dcterms.bibliographicCitationMontoya, O.D.; Molina-Cabrera, A.; Chamorro, H.R.; Alvarado-Barrios, L.; Rivas-Trujillo, E. A Hybrid Approach Based on SOCP and the Discrete Version of the SCA for Optimal Placement and Sizing DGs in AC Distribution Networks. Electronics 2020, 10, 26. doi:10.3390/electronics10010026.spa
dcterms.bibliographicCitationSultana, S.; Roy, P.K. Krill herd algorithm for optimal location of distributed generator in radial distribution system. Appl. Soft Comput. 2016, 40, 391–404. doi:10.1016/j.asoc.2015.11.036.spa
dcterms.bibliographicCitationKaur, S.; Kumbhar, G.; Sharma, J. A MINLP technique for optimal placement of multiple DG units in distribution systems. Int. J. Electr. Power Energy Syst. 2014, 63, 609–617. doi:10.1016/j.ijepes.2014.06.023spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Grisales-Noreña, L. An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach. Ain Shams Eng. J. 2020, 11, 409–418. doi:10.1016/j.asej.2019.08.011.spa
dcterms.bibliographicCitation. Gil-González, W.; Montoya, O.D.; Grisales-Noreña, L.F.; Perea-Moreno, A.J.; Hernandez-Escobedo, Q. Optimal Placement and Sizing of Wind Generators in AC Grids Considering Reactive Power Capability and Wind Speed Curves. Sustainability 2020, 12, 2983. doi:10.3390/su12072983.spa
dcterms.bibliographicCitationBuitrago-Velandia, A.F.; Montoya, O.D.; Gil-González, W. Dynamic Reactive Power Compensation in Power Systems through the Optimal Siting and Sizing of Photovoltaic Sources. Resources 2021, 10, 47. doi:10.3390/resources10050047.spa
dcterms.bibliographicCitationMolina, A.; Montoya, O.D.; Gil-González, W. Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sources. DYNA 2021, 88, 178–184. doi:10.15446/dyna.v88n217.93099spa
dcterms.bibliographicCitationBarbato, A.; Capone, A. Optimization Models and Methods for Demand-Side Management of Residential Users: A Survey. Energies 2014, 7, 5787–5824. doi:10.3390/en7095787.spa
dcterms.bibliographicCitationCarli, R.; Dotoli, M. Energy scheduling of a smart home under nonlinear pricing. In Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA, 15–17 December 2014. doi:10.1109/cdc.2014.7040273.spa
dcterms.bibliographicCitationBernal-Romero, D.L.; Montoya, O.D.; Arias-Londoño, A. Solution of the Optimal Reactive Power Flow Problem Using a Discrete-Continuous CBGA Implemented in the DigSILENT Programming Language. Computers 2021, 10, 151. doi:10.3390/computers10110151.spa
dcterms.bibliographicCitationChen, X.; Li, Z.; Wan, W.; Zhu, L.; Shao, Z. A master–slave solving method with adaptive model reformulation technique for water network synthesis using MINLP. Sep. Purif. Technol. 2012, 98, 516–530. doi:10.1016/j.seppur.2012.06.039.spa
dcterms.bibliographicCitationMcCall, J. Genetic algorithms for modelling and optimisation. J. Comput. Appl. Math. 2005, 184, 205–222. doi:10.1016/j.cam.2004.07.034spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Orozco-Henao, C. Vortex search and Chu-Beasley genetic algorithms for optimal location and sizing of distributed generators in distribution networks: A novel hybrid approach. Eng. Sci. Technol. Int. J. 2020, 23, 1351–1363. doi:10.1016/j.jestch.2020.08.002.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems. Electr. Power Syst. Res. 2020, 187, 106454. doi:10.1016/j.epsr.2020.106454.spa
dcterms.bibliographicCitationShen, T.; Li, Y.; Xiang, J. A Graph-Based Power Flow Method for Balanced Distribution Systems. Energies 2018, 11, 511. doi:10.3390/en11030511.spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Montoya, O.D.; Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. J. Energy Storage 2020, 29, 101488.spa
dcterms.bibliographicCitationWang, P.; Wang, W.; Xu, D. Optimal Sizing of Distributed Generations in DC Microgrids With Comprehensive Consideration of System Operation Modes and Operation Targets. IEEE Access 2018, 6, 31129–31140. doi:10.1109/access.2018.2842119spa
dcterms.bibliographicCitationWang, Q.; Chang, P.; Bai, R.; Liu, W.; Dai, J.; Tang, Y. Mitigation Strategy for Duck Curve in High Photovoltaic Penetration Power System Using Concentrating Solar Power Station. Energies 2019, 12, 3521. doi:10.3390/en12183521.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.3390/su132413633
dc.subject.keywordsDistributed generationspa
dc.subject.keywordsPV sourcesspa
dc.subject.keywordsOptimization algorithmspa
dc.subject.keywordsGenetic algorithmspa
dc.subject.keywordsPlaning of electrical gridsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.