Mostrar el registro sencillo del ítem
Optimal investments in PV sources for grid-connected distribution networks: An application of the discrete–continuous genetic algorithm
dc.contributor.author | Montoya Giraldo, Oscar Danilo | |
dc.contributor.author | Grisales-Noreña, Luis Fernando | |
dc.contributor.author | Perea-Moreno, Alberto-Jesus | |
dc.date.accessioned | 2022-03-18T18:36:07Z | |
dc.date.available | 2022-03-18T18:36:07Z | |
dc.date.issued | 2021-12-09 | |
dc.date.submitted | 2022-03-18 | |
dc.identifier.citation | Montoya, O.D.; GrisalesNoreña, L.F.; Perea-Moreno, A.-J. Optimal Investments in PV Sources for Grid-Connected Distribution Networks: An Application of the Discrete–Continuous Genetic Algorithm. Sustainability 2021, 13, 13633. https://doi.org/10.3390/su132413633 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10627 | |
dc.description.abstract | The problem of the optimal siting and sizing of photovoltaic (PV) sources in grid connected distribution networks is addressed in this study with a master–slave optimization approach. In the master optimization stage, a discrete–continuous version of the Chu and Beasley genetic algorithm (DCCBGA) is employed, which defines the optimal locations and sizes for the PV sources. In the slave stage, the successive approximation method is used to evaluate the fitness function value for each individual provided by the master stage. The objective function simultaneously minimizes the energy purchasing costs in the substation bus, and the investment and operating costs for PV sources for a planning period of 20 years. The numerical results of the IEEE 33-bus and 69-bus systems demonstrate that with the proposed optimization methodology, it is possible to eliminate about 27% of the annual operation costs in both systems with optimal locations for the three PV sources. After 100 consecutive evaluations of the DCCBGA, it was observed that 44% of the solutions found by the IEEE 33-bus system were better than those found by the BONMIN solver in the General Algebraic Modeling System (GAMS optimization package). In the case of the IEEE 69-bus system, the DCCBGA ensured, with 55% probability, that solutions with better objective function values than the mean solution value of the GAMS were found. Power generation curves for the slack source confirmed that the optimal siting and sizing of PV sources create the duck curve for the power required to the main grid; in addition, the voltage profile curves for both systems show that voltage regulation was always maintained between ±10% in all the time periods under analysis. All the numerical validations were carried out in the MATLAB programming environment with the GAMS optimization package. | spa |
dc.format.extent | 19 Páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Sustainability 2021, 13, 13633. | spa |
dc.title | Optimal investments in PV sources for grid-connected distribution networks: An application of the discrete–continuous genetic algorithm | spa |
dcterms.bibliographicCitation | Tully, S. The Human Right to Access Electricity. Electr. J. 2006, 19, 30–39. doi:10.1016/j.tej.2006.02.003 | spa |
dcterms.bibliographicCitation | Lofquist, L. Is there a universal human right to electricity? Int. J. Hum. Rights 2019, 24, 711–723. doi:10.1080/13642987.2019.1671355 | spa |
dcterms.bibliographicCitation | Abdallah, L.; El-Shennawy, T. Reducing Carbon Dioxide Emissions from Electricity Sector Using Smart Electric Grid Applications. J. Eng. 2013, 2013, 845051. doi:10.1155/2013/845051. | spa |
dcterms.bibliographicCitation | Jursová, S.; Burchart-Korol, D.; Pustˇejovská, P.; Korol, J.; Blaut, A. Greenhouse Gas Emission Assessment from Electricity Production in the Czech Republic. Environments 2018, 5, 17. doi:10.3390/environments5010017. | spa |
dcterms.bibliographicCitation | Abdmouleh, Z.; Alammari, R.A.; Gastli, A. Review of policies encouraging renewable energy integration & best practices. Renew. Sustain. Energy Rev. 2015, 45, 249–262. doi:10.1016/j.rser.2015.01.035 | spa |
dcterms.bibliographicCitation | Braun, G.W. State policies for collaborative local renewable integration. Electr. J. 2020, 33, 106691. doi:10.1016/j.tej.2019.106691. | spa |
dcterms.bibliographicCitation | Muhammad, M.A.; Mokhlis, H.; Naidu, K.; Amin, A.; Franco, J.F.; Othman, M. Distribution Network Planning Enhancement via Network Reconfiguration and DG Integration Using Dataset Approach and Water Cycle Algorithm. J. Mod. Power Syst. Clean Energy 2020, 8, 86–93. doi:10.35833/mpce.2018.000503. | spa |
dcterms.bibliographicCitation | Hernandez, J.A.; Arredondo, C.A.; Rodriguez, D.J. Analysis of the law for the integration of non-conventional renewable energy sources (law 1715 of 2014) and its complementary decrees in Colombia. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019. doi:10.1109/pvsc40753.2019.8981233. | spa |
dcterms.bibliographicCitation | Congreso de Colombia. Ley No. 1715 del 13 de Mayo de 2014; UPME: Medellin, Colombia, 2014; p. 26 | spa |
dcterms.bibliographicCitation | León-Vargas, F.; García-Jaramillo, M.; Krejci, E. Pre-feasibility of wind and solar systems for residential self-sufficiency in four urban locations of Colombia: Implication of new incentives included in Law 1715. Renew. Energy 2019, 130, 1082–1091. doi:10.1016/j.renene.2018.06.087. | spa |
dcterms.bibliographicCitation | López, A.R.; Krumm, A.; Schattenhofer, L.; Burandt, T.; Montoya, F.C.; Oberländer, N.; Oei, P.Y. Solar PV generation in Colombia— A qualitative and quantitative approach to analyze the potential of solar energy market. Renew. Energy 2020, 148, 1266–1279. doi:10.1016/j.renene.2019.10.066 | spa |
dcterms.bibliographicCitation | IPSE. Boletín de Datos IPSE Septiembre 2021; IPSE: Bogota, Colombia, 2021. 13. Delgado, R.; Wild, T.B.; Arguello, R.; Clarke, L.; Romero, G. Options for Col | spa |
dcterms.bibliographicCitation | Delgado, R.; Wild, T.B.; Arguello, R.; Clarke, L.; Romero, G. Options for Colombia's mid-century deep decarbonization strategy. Energy Strategy Rev. 2020, 32, 100525. doi:10.1016/j.esr.2020.100525. | spa |
dcterms.bibliographicCitation | Colmenares-Quintero, R.F.; Maestre-Gongora, G.P.; Pacheco-Moreno, L.J.; Rojas, N.; Stansfield, K.E.; Colmenares-Quintero, J.C. Analysis of the energy service in non-interconnected zones of Colombia using business intelligence. Cogent Eng. 2021, 8, 1907970. doi:10.1080/23311916.2021.1907970. | spa |
dcterms.bibliographicCitation | Paz-Rodríguez, A.; Castro-Ordoñez, J.F.; Montoya, O.D.; Giral-Ramírez, D.A. Optimal Integration of Photovoltaic Sources in Distribution Networks for Daily Energy Losses Minimization Using the Vortex Search Algorithm. Appl. Sci. 2021, 11, 4418. doi:10.3390/app11104418 | spa |
dcterms.bibliographicCitation | Valencia, A.; Hincapie, R.A.; Gallego, R.A. Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium–low voltage distribution networks. J. Energy Storage 2021, 34, 102158. doi:10.1016/j.est.2020.102158. | spa |
dcterms.bibliographicCitation | Grisales-Noreña, L.; Montoya, D.G.; Ramos-Paja, C. Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques. Energies 2018, 11, 1018. doi:10.3390/en11041018 | spa |
dcterms.bibliographicCitation | Helmi, A.M.; Carli, R.; Dotoli, M.; Ramadan, H.S. Efficient and Sustainable Reconfiguration of Distribution Networks via Metaheuristic Optimization. IEEE Trans. Autom. Sci. Eng. 2021, early access. doi:10.1109/tase.2021.3072862 | spa |
dcterms.bibliographicCitation | Castiblanco-Pérez, C.M.; Toro-Rodríguez, D.E.; Montoya, O.D.; Giral-Ramírez, D.A. Optimal Placement and Sizing of DSTATCOM in Radial and Meshed Distribution Networks Using a Discrete-Continuous Version of the Genetic Algorithm. Electronics 2021, 10, 1452. doi:10.3390/electronics10121452. | spa |
dcterms.bibliographicCitation | Bhumkittipich, K.; Phuangpornpitak, W. Optimal Placement and Sizing of Distributed Generation for Power Loss Reduction Using Particle Swarm Optimization. Energy Procedia 2013, 34, 307–317. doi:10.1016/j.egypro.2013.06.759 | spa |
dcterms.bibliographicCitation | Ayodele, T.R.; Ogunjuyigbe, A.S.O.; Akinola, O.O. Optimal Location, Sizing, and Appropriate Technology Selection of Distributed Generators for Minimizing Power Loss Using Genetic Algorithm. J. Renew. Energy 2015, 2015, 832917. doi:10.1155/2015/832917 | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Molina-Cabrera, A.; Chamorro, H.R.; Alvarado-Barrios, L.; Rivas-Trujillo, E. A Hybrid Approach Based on SOCP and the Discrete Version of the SCA for Optimal Placement and Sizing DGs in AC Distribution Networks. Electronics 2020, 10, 26. doi:10.3390/electronics10010026. | spa |
dcterms.bibliographicCitation | Sultana, S.; Roy, P.K. Krill herd algorithm for optimal location of distributed generator in radial distribution system. Appl. Soft Comput. 2016, 40, 391–404. doi:10.1016/j.asoc.2015.11.036. | spa |
dcterms.bibliographicCitation | Kaur, S.; Kumbhar, G.; Sharma, J. A MINLP technique for optimal placement of multiple DG units in distribution systems. Int. J. Electr. Power Energy Syst. 2014, 63, 609–617. doi:10.1016/j.ijepes.2014.06.023 | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Gil-González, W.; Grisales-Noreña, L. An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach. Ain Shams Eng. J. 2020, 11, 409–418. doi:10.1016/j.asej.2019.08.011. | spa |
dcterms.bibliographicCitation | . Gil-González, W.; Montoya, O.D.; Grisales-Noreña, L.F.; Perea-Moreno, A.J.; Hernandez-Escobedo, Q. Optimal Placement and Sizing of Wind Generators in AC Grids Considering Reactive Power Capability and Wind Speed Curves. Sustainability 2020, 12, 2983. doi:10.3390/su12072983. | spa |
dcterms.bibliographicCitation | Buitrago-Velandia, A.F.; Montoya, O.D.; Gil-González, W. Dynamic Reactive Power Compensation in Power Systems through the Optimal Siting and Sizing of Photovoltaic Sources. Resources 2021, 10, 47. doi:10.3390/resources10050047. | spa |
dcterms.bibliographicCitation | Molina, A.; Montoya, O.D.; Gil-González, W. Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sources. DYNA 2021, 88, 178–184. doi:10.15446/dyna.v88n217.93099 | spa |
dcterms.bibliographicCitation | Barbato, A.; Capone, A. Optimization Models and Methods for Demand-Side Management of Residential Users: A Survey. Energies 2014, 7, 5787–5824. doi:10.3390/en7095787. | spa |
dcterms.bibliographicCitation | Carli, R.; Dotoli, M. Energy scheduling of a smart home under nonlinear pricing. In Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA, 15–17 December 2014. doi:10.1109/cdc.2014.7040273. | spa |
dcterms.bibliographicCitation | Bernal-Romero, D.L.; Montoya, O.D.; Arias-Londoño, A. Solution of the Optimal Reactive Power Flow Problem Using a Discrete-Continuous CBGA Implemented in the DigSILENT Programming Language. Computers 2021, 10, 151. doi:10.3390/computers10110151. | spa |
dcterms.bibliographicCitation | Chen, X.; Li, Z.; Wan, W.; Zhu, L.; Shao, Z. A master–slave solving method with adaptive model reformulation technique for water network synthesis using MINLP. Sep. Purif. Technol. 2012, 98, 516–530. doi:10.1016/j.seppur.2012.06.039. | spa |
dcterms.bibliographicCitation | McCall, J. Genetic algorithms for modelling and optimisation. J. Comput. Appl. Math. 2005, 184, 205–222. doi:10.1016/j.cam.2004.07.034 | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Gil-González, W.; Orozco-Henao, C. Vortex search and Chu-Beasley genetic algorithms for optimal location and sizing of distributed generators in distribution networks: A novel hybrid approach. Eng. Sci. Technol. Int. J. 2020, 23, 1351–1363. doi:10.1016/j.jestch.2020.08.002. | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Gil-González, W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems. Electr. Power Syst. Res. 2020, 187, 106454. doi:10.1016/j.epsr.2020.106454. | spa |
dcterms.bibliographicCitation | Shen, T.; Li, Y.; Xiang, J. A Graph-Based Power Flow Method for Balanced Distribution Systems. Energies 2018, 11, 511. doi:10.3390/en11030511. | spa |
dcterms.bibliographicCitation | Grisales-Noreña, L.F.; Montoya, O.D.; Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. J. Energy Storage 2020, 29, 101488. | spa |
dcterms.bibliographicCitation | Wang, P.; Wang, W.; Xu, D. Optimal Sizing of Distributed Generations in DC Microgrids With Comprehensive Consideration of System Operation Modes and Operation Targets. IEEE Access 2018, 6, 31129–31140. doi:10.1109/access.2018.2842119 | spa |
dcterms.bibliographicCitation | Wang, Q.; Chang, P.; Bai, R.; Liu, W.; Dai, J.; Tang, Y. Mitigation Strategy for Duck Curve in High Photovoltaic Penetration Power System Using Concentrating Solar Power Station. Energies 2019, 12, 3521. doi:10.3390/en12183521. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.doi | https://doi.org/10.3390/su132413633 | |
dc.subject.keywords | Distributed generation | spa |
dc.subject.keywords | PV sources | spa |
dc.subject.keywords | Optimization algorithm | spa |
dc.subject.keywords | Genetic algorithm | spa |
dc.subject.keywords | Planing of electrical grids | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.