Mostrar el registro sencillo del ítem
Optimal Economic–Environmental Operation of BESS in AC Distribution Systems: A Convex Multi-Objective Formulation
dc.contributor.author | Gil González, Walter Julián | |
dc.contributor.author | Montoya Giraldo, Oscar Danilo | |
dc.contributor.author | Grisales-Noreña, Luis Fernando | |
dc.contributor.author | Escobar Mejía, Andrés | |
dc.date.accessioned | 2022-03-18T18:33:18Z | |
dc.date.available | 2022-03-18T18:33:18Z | |
dc.date.issued | 2021-12-10 | |
dc.date.submitted | 2022-03-18 | |
dc.identifier.citation | Gil-González, W.; Montoya, O.D.; Grisales-Noreña, L.F.; Escobar-Mejía, A. Optimal Economic–Environmental Operation of BESS in AC Distribution Systems: A Convex Multi-Objective Formulation. Computation 2021, 9, 137. https://doi.org/10.3390/computation9120137 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10625 | |
dc.description.abstract | This paper deals with the multi-objective operation of battery energy storage systems (BESS) in AC distribution systems using a convex reformulation. The objective functions are CO2 emissions, and the costs of the daily energy losses are considered. The conventional non-linear nonconvex branch multi-period optimal power flow model is reformulated with a second-order cone programming (SOCP) model, which ensures finding the global optimum for each point present in the Pareto front. The weighting factors methodology is used to convert the multi-objective model into a convex single-objective model, which allows for finding the optimal Pareto front using an iterative search. Two operational scenarios regarding BESS are considered: (i) a unity power factor operation and (ii) a variable power factor operation. The numerical results demonstrate that including the reactive power capabilities in BESS reduces 200 kg of CO2 emissions and USD 80 per day of operation. All of the numerical validations were developed in MATLAB 2020b with the CVX tool and the SEDUMI and SDPT3 solvers | spa |
dc.format.extent | 17 Páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Computation 2021, 9, 137 | spa |
dc.title | Optimal Economic–Environmental Operation of BESS in AC Distribution Systems: A Convex Multi-Objective Formulation | spa |
dcterms.bibliographicCitation | Kocer, M.C.; Cengiz, C.; Gezer, M.; Gunes, D.; Cinar, M.A.; Alboyaci, B.; Onen, A. Assessment of Battery Storage Technologies for a Turkish Power Network. Sustainability 2019, 11, 3669. doi:10.3390/su11133669. | spa |
dcterms.bibliographicCitation | Zheng, Y.; Zhao, J.; Song, Y.; Luo, F.; Meng, K.; Qiu, J.; Hill, D.J. Optimal Operation of Battery Energy Storage System Considering Distribution System Uncertainty. IEEE Trans. Sustain. Energy 2018, 9, 1051–1060. doi:10.1109/tste.2017.2762364. | spa |
dcterms.bibliographicCitation | Li, B.; Wang, Y.; Li, J.; Cao, S. A Fully Distributed Approach for Economic Dispatch Problem of Smart Grid. Energies 2018, 11, 1993. doi:10.3390/en11081993. | spa |
dcterms.bibliographicCitation | Monteiro, R.V.; Guimarães, G.C.; Moura, F.A.; Albertini, M.R.; Silva, F.B. Long-term sizing of lead–acid batteries in order to reduce technical losses on distribution networks: A distributed generation approach. Electr. Power Syst. Res. 2017, 144, 163–174. doi:10.1016/j.epsr.2016.12.004. | spa |
dcterms.bibliographicCitation | Koehler, U. General Overview of Non-Lithium Battery Systems and their Safety Issues. In Electrochemical Power Sources: Fundamentals, Systems, and Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 21–46. doi:10.1016/b978-0-444-63777- 2.00002-5 | spa |
dcterms.bibliographicCitation | Hesse, H.; Schimpe, M.; Kucevic, D.; Jossen, A. Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids. Energies 2017, 10, 2107. doi:10.3390/en10122107 | spa |
dcterms.bibliographicCitation | Chen, T.; Jin, Y.; Lv, H.; Yang, A.; Liu, M.; Chen, B.; Xie, Y.; Chen, Q. Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems. Trans. Tianjin Univ. 2020, 26, 208–217. doi:10.1007/s12209-020-00236-w | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Gil-González, W. Dynamic active and reactive power compensation in distribution networks with batteries: A day-ahead economic dispatch approach. Comput. Electr. Eng. 2020, 85, 106710. doi:10.1016/j.compeleceng.2020.106710. | spa |
dcterms.bibliographicCitation | Zhu, Y.; Liu, C.; Wang, B.; Sun, K. Damping control for a target oscillation mode using battery energy storage. J. Mod. Power Syst. Clean Energy 2018, 6, 833–845. doi:10.1007/s40565-017-0371-3. | spa |
dcterms.bibliographicCitation | Bangash, K.N.; Farrag, M.E.A.; Osman, A.H. Investigation of Energy Storage Batteries in Stability Enforcement of Low Inertia Active Distribution Network. Technol. Econ. Smart Grids Sustain. Energy 2019, 4, 1–12. doi:10.1007/s40866-018-0059-4. | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Gil-González, W.; Hernández, J.C. Optimal Selection and Location of BESS Systems in Medium-Voltage Rural Distribution Networks for Minimizing Greenhouse Gas Emissions. Electronics 2020, 9, 2097. doi:10.3390/electronics9122097 | spa |
dcterms.bibliographicCitation | Li, X.; Wang, S. A review on energy management, operation control and application methods for grid battery energy storage systems. CSEE J. Power Energy Syst. 2019. doi:10.17775/cseejpes.2019.00160. | spa |
dcterms.bibliographicCitation | Vargas, A.; Samper, M.E. Real-Time Monitoring and Economic Dispatch of Smart Distribution Grids: High Performance Algorithms for DMS Applications. IEEE Trans. Smart Grid 2012, 3, 866–877. doi:10.1109/tsg.2012.2187078 | spa |
dcterms.bibliographicCitation | Zhang, H.; Zhao, D.; Gu, C.; Li, F.; Wang, B. Economic optimization of smart distribution networks considering real-time pricing. J. Mod. Power Syst. Clean Energy 2014, 2, 350–356. doi:10.1007/s40565-014-0086-7 | spa |
dcterms.bibliographicCitation | Zhang, R.; Hredzak, B. Nonlinear Sliding Mode and Distributed Control of Battery Energy Storage and Photovoltaic Systems in AC Microgrids With Communication Delays. IEEE Trans. Ind. Inform. 2019, 15, 5149–5160. doi:10.1109/tii.2019.2896032. | spa |
dcterms.bibliographicCitation | Becherif, M.; Ayad, M.Y.; Henni, A.; Wack, M.; Aboubou, A.; Allag, A.; Sebai, M. Passivity-Based Control and Sliding Mode Control applied to Electric Vehicles based on Fuel Cells, Supercapacitors and Batteries on the DC Link. In Energy Management; InTech: Rijeka, Croatia, 2010. doi:10.5772/39528. | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Gil-Gonzalez, W.J.; Garces, A.; Escobar-Mejia, A.; Norena, L.F.G. Nonlinear Control for Battery Energy Storage Systems in Power Grids. In Proceedings of the 2018 IEEE Green Technologies Conference (GreenTech), Austin, TX, USA, 4–6 April 2018. doi:10.1109/greentech.2018.00021 | spa |
dcterms.bibliographicCitation | Swathika, R.; Ram, R.; Kalaichelvi, V.; Karthikeyan, R. Application of fuzzy logic for charging control of lead-acid battery in stand-alone solar photovoltaic system. In Proceedings of the 2013 International Conference on Green Computing, Communication and Conservation of Energy (ICGCE), Chennai, India, 12–14 December 2013. doi:10.1109/icgce.2013.6823464. | spa |
dcterms.bibliographicCitation | . Jadhav, A.D.; Nair, S. Battery Management using Fuzzy Logic Controller. J. Phys. Conf. Ser. 2019, 1172, 012093. doi:10.1088/1742- 6596/1172/1/012093. | spa |
dcterms.bibliographicCitation | . Lee, H.J.; Jhang, S.S.; Yu, W.K.; Oh, J.H. Artificial Neural Network Control of Battery Energy Storage System to Damp-Out Inter-Area Oscillations in Power Systems. Energies 2019, 12, 3372. doi:10.3390/en12173372 | spa |
dcterms.bibliographicCitation | Fernández, L.M.; Serra, F.; Angelo, C.D.; Montoya, O. Control of a charging station for electric vehicles. J. Phys. Conf. Ser. 2020, 1448, 012013. doi:10.1088/1742-6596/1448/1/012013. | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Grajales, A.; Garces, A.; Castro, C.A. Distribution Systems Operation Considering Energy Storage Devices and Distributed Generation. IEEE Lat. Am. Trans. 2017, 15, 890–900. doi:10.1109/tla.2017.7910203 | spa |
dcterms.bibliographicCitation | Grisales-Noreña, L.; Montoya, O.D.; Gil-González, W. Integration of energy storage systems in AC distribution networks: Optimal location, selecting, and operation approach based on genetic algorithms. J. Energy Storage 2019, 25, 100891. doi:10.1016/j.est.2019.100891. | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Gil-González, W.; Serra, F.M.; Hernández, J.C.; Molina-Cabrera, A. A Second-Order Cone Programming Reformulation of the Economic Dispatch Problem of BESS for Apparent Power Compensation in AC Distribution Networks. Electronics 2020, 9, 1677. doi:10.3390/electronics9101677. | spa |
dcterms.bibliographicCitation | Zafar, R.; Ravishankar, J.; Fletcher, J.E.; Pota, H.R. Optimal Dispatch of Battery Energy Storage System Using Convex Relaxations in Unbalanced Distribution Grids. IEEE Trans. Ind. Inform. 2020, 16, 97–108. doi:10.1109/TII.2019.2912925. | spa |
dcterms.bibliographicCitation | Abou El-Ela, A.A.; El-Seheimy, R.A.; Shaheen, A.M.; Wahbi, W.A.; Mouwafi, M.T. PV and battery energy storage integration in distribution networks using equilibrium algorithm. J. Energy Storage 2021, 42, 103041. | spa |
dcterms.bibliographicCitation | Shaheen, A.M.; Elattar, E.E.; El-Sehiemy, R.A.; Elsayed, A.M. An Improved Sunflower Optimization Algorithm-Based Monte Carlo Simulation for Efficiency Improvement of Radial Distribution Systems Considering Wind Power Uncertainty. IEEE Access 2021, 9, 2332–2344. doi:10.1109/ACCESS.2020.3047671 | spa |
dcterms.bibliographicCitation | Yuan, Z.; Wang, W.; Wang, H.; Yildizbasi, A. A new methodology for optimal location and sizing of battery energy storage system in distribution networks for loss reduction. J. Energy Storage 2020, 29, 101368 | spa |
dcterms.bibliographicCitation | Deng, T.; Ran, Y.; Yin, Y.; Liu, P. Multi-objective optimization design of thermal management system for lithium-ion battery pack based on Non-dominated Sorting Genetic Algorithm II. Appl. Therm. Eng. 2020, 164, 114394. doi:10.1016/j.applthermaleng.2019.114394. | spa |
dcterms.bibliographicCitation | Shaheen, A.M.; Hamida, M.A.; El-Sehiemy, R.A.; Elattar, E.E. Optimal parameter identification of linear and non-linear models for Li-Ion Battery Cells. Energy Rep. 2021, 7, 7170–7185 | spa |
dcterms.bibliographicCitation | Farivar, M.; Low, S.H. Branch Flow Model: Relaxations and Convexification—Part I. IEEE Trans. Power Syst. 2013, 28, 2554–2564. doi:10.1109/tpwrs.2013.2255317 | spa |
dcterms.bibliographicCitation | Liu, W.; Zheng, T.; Liu, Z.; Fan, Z.; Kang, Y.; Wang, D.; Zhang, M.; Miao, S. Active and Reactive Power Compensation Control Strategy for VSC-HVDC Systems under Unbalanced Grid Conditions. Energies 2018, 11, 3140. doi:10.3390/en11113140. | spa |
dcterms.bibliographicCitation | Gonzalez, W.J.G.; Bocanegra, S.Y.; Serra, F.M.; Bueno-López, M.; Magaldi, G.L. Control Methods for Single-phase Voltage Supply with VSCs to Feed Nonlinear Loads in Rural Areas. Trans. Energy Syst. Eng. Appl. 2020, 1, 33–47. doi:10.32397/tesea.vol1.n1.3. | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Gil-González, W.; Hernández, J.C. Efficient Operative Cost Reduction in Distribution Grids Considering the Optimal Placement and Sizing of D-STATCOMs Using a Discrete-Continuous VSA. Appl. Sci. 2021, 11, 2175. doi:10.3390/app11052175 | spa |
dcterms.bibliographicCitation | Serra, F.M.; Fernández, L.M.; Montoya, O.D.; Gil-González, W.; Hernández, J.C. Nonlinear Voltage Control for Three-Phase DCAC Converters in Hybrid Systems: An Application of the PI-PBC Method. Electronics 2020, 9, 847. doi:10.3390/electronics9050847. | spa |
dcterms.bibliographicCitation | Benson, H.Y.; Sa ˘glam, Ü. Mixed-Integer Second-Order Cone Programming: A Survey. In Theory Driven by Influential Applications; INFORMS: Catonsville, MD, USA, 2013; pp. 13–36. doi:10.1287/educ.2013.0115. | spa |
dcterms.bibliographicCitation | Chen, G.; Yi, X.; Zhang, Z.; Lei, H. Solving the Multi-Objective Optimal Power Flow Problem Using the Multi-Objective Firefly Algorithm with a Constraints-Prior Pareto-Domination Approach. Energies 2018, 11, 3438. doi:10.3390/en11123438 | spa |
dcterms.bibliographicCitation | Eltved, A.; Dahl, J.; Andersen, M.S. On the robustness and scalability of semidefinite relaxation for optimal power flow problems. Optim. Eng. 2019, 21, 375–392. doi:10.1007/s11081-019-09427-4. | spa |
dcterms.bibliographicCitation | Molina-Martin, F.; Montoya, O.D.; Grisales-Noreña, L.F.; Hernández, J.C.; Ramírez-Vanegas, C.A. Simultaneous Minimization of Energy Losses and Greenhouse Gas Emissions in AC Distribution Networks Using BESS. Electronics 2021, 10, 1002. doi:10.3390/electronics10091002. | spa |
dcterms.bibliographicCitation | Lipu, M.S.H.; Hannan, M.A.; Hussain, A.; Ayob, A.; Saad, M.H.M.; Muttaqi, K.M. State of Charge Estimation in Lithium-Ion Batteries: A Neural Network Optimization Approach. Electronics 2020, 9, 1546. doi:10.3390/electronics9091546. | spa |
dcterms.bibliographicCitation | Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming, Version 2.1. 2014. Available online: http: //cvxr.com/cvx (accessed on 3 November 2021). | spa |
dcterms.bibliographicCitation | Gil-González, W.; Montoya, O.D.; Holguín, E.; Garces, A.; Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J. Energy Storage 2019, 21, 1–8. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.doi | https://doi.org/10.3390/computation9120137 | |
dc.subject.keywords | Battery energy storage system | spa |
dc.subject.keywords | Multi-objective optimization model | spa |
dc.subject.keywords | Distribution networks | spa |
dc.subject.keywords | Non-linear optimization | spa |
dc.subject.keywords | Convex reformulation | spa |
dc.subject.keywords | Second-order cone programming | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.