Mostrar el registro sencillo del ítem

dc.contributor.authorPayares, Esteban
dc.contributor.authorMartínez-Santos, Juan Carlos
dc.date.accessioned2022-03-14T20:59:01Z
dc.date.available2022-03-14T20:59:01Z
dc.date.issued2021-12-10
dc.date.submitted2022-03-11
dc.identifier.citationPayares, Esteban & Martinez Santos, Juan Carlos. (2021). Parallel Quantum Computation Approach for Quantum Deep Learning and Classical-Quantum Models. Journal of Physics: Conference Series. 2090. 012171. 10.1088/1742-6596/2090/1/012171.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10620
dc.description.abstractThe paradigm of Quantum computing and artificial intelligence has been growing steadily in recent years and given the potential of this technology by recognizing the computer as a physical system that can take advantage of quantum mechanics for solving problems faster, more efficiently, and accurately. We suggest experimentation of this potential through an architecture of different quantum models computed in parallel. In this work, we present encouraging results of how it is possible to use Quantum Processing Units analogically to Graphics Processing Units to accelerate algorithms and improve the performance of machine learning models through three experiments. The first experiment was a reproduction of a parity function, allowing us to see how the convergence of a given Quantum model is influenced significantly by computing it in parallel. For the second and third experiments, we implemented an image classification problem by training quantum neural networks and using pre-trained models to compare their performances with the same experiments carried out with parallel quantum computations. We obtained very similar results in the accuracies, which were close to 100% and significantly improved the execution time, approximately 15 times faster in the best-case scenario. We also propose an alternative as a proof of concept to address emotion recognition problems using optimization algorithms and how execution times can be positively affected by parallel quantum computation. To do this, we use tools such as the cross-platform software library PennyLane and Amazon Web Services to access high-end simulators with Amazon Braket and IBM quantum experience.spa
dc.format.extent12 Páginas
dc.format.mediumPdf
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Physics: Conference Series - Vol. 2090 (2021).spa
dc.titleParallel Quantum Computation Approach for Quantum Deep Learning and Classical-Quantum Modelsspa
dcterms.bibliographicCitationScott L R, Clark T and Bagheri B 2021 Scientific parallel computing (Princeton University Press)spa
dcterms.bibliographicCitationAlerstam E, Svensson T and Andersson-Engels S 2008 Journal of biomedical optics 13 060504spa
dcterms.bibliographicCitationCybenko G 2017 Parallel computing for machine learning in social network analysis 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) (IEEE) pp 1464–1471spa
dcterms.bibliographicCitationCavuoti S, Garofalo M, Brescia M, Longo G, Ventre G et al. 2013 Genetic algorithm modeling with gpu parallel computing technology Neural Nets and Surroundings (Springer) pp 29–39spa
dcterms.bibliographicCitationArute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G S L, Buell D A, Burkett B, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Guerin K, Habegger S, Harrigan M P, Hartmann M J, Ho A, Hoffmann M, Huang T, Humble T S, Isakov S V, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Kelly J, Klimov P V, Knysh S, Korotkov A, Kostritsa F, Landhuis D, Lindmark M, Lucero E, Lyakh D, Mandr`a S, McClean J R, McEwen M, Megrant A, Mi X, Michielsen K, Mohseni M, Mutus J, Naaman O, Neeley M, Neill C, Niu M Y, Ostby E, Petukhov A, Platt J C, Quintana C, Rieffel E G, Roushan P, Rubin N C, Sank D, Satzinger K J, Smelyanskiy V, Sung K J, Trevithick M D, Vainsencher A, Villalonga B, White T, Yao Z J, Yeh P, Zalcman A, Neven H and Martinis J M 2019 Nature 574 505–510 ISSN 1476-4687spa
dcterms.bibliographicCitationRist`e D, da Silva M P, Ryan C A, Cross A W, C´orcoles A D, Smolin J A, Gambetta J M, Chow J M and Johnson B R 2017 npj Quantum Information 3 1–5 ISSN 2056-6387 URL https://www.nature.com/ articles/s41534-017-0017-3spa
dcterms.bibliographicCitationBiamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N and Lloyd S 2017 Nature 549 195–202spa
dcterms.bibliographicCitationSchuld M, Sinayskiy I and Petruccione F 2015 Contemporary Physics 56 172–185spa
dcterms.bibliographicCitation] Schuld M, Sinayskiy I and Petruccione F 2015 Contemporary Physics 56 172–185 [9] Kerenidis I and Luongo A 2020 Physical Review A 101 062327 ISSN 2469-9926, 2469-9934 arXiv: 1805.08837 URL http://arxiv.org/abs/1805.08837spa
dcterms.bibliographicCitationRebentrost P, Mohseni M and Lloyd S 2014 Physical Review Letters 113 130503 ISSN 0031-9007, 1079-7114 URL https://link.aps.org/doi/10.1103/PhysRevLett.113.130503spa
dcterms.bibliographicCitationHavl´ıˇcek V, C´orcoles A D, Temme K, Harrow A W, Kandala A, Chow J M and Gambetta J M 2019 Nature 567 209–212 ISSN 0028-0836, 1476-4687 URL http://www.nature.com/articles/s41586-019-0980-2spa
dcterms.bibliographicCitationLi Y, Zhou R G, Xu R, Luo J and Hu W 2020 Quantum Science and Technology 5 044003 URL https://doi.org/10.1088/2058-9565/ab9f93spa
dcterms.bibliographicCitationMari A, Bromley T R, Izaac J, Schuld M and Killoran N 2020 Quantum 4 340 ISSN 2521-327X URL http://dx.doi.org/10.22331/q-2020-10-09-340spa
dcterms.bibliographicCitationMengoni R, Incudini M and Di Pierro A 2021 Quantum Machine Intelligence 3 8 ISSN 2524-4906, 2524-4914 URL http://link.springer.com/10.1007/s42484-020-00035-5spa
dcterms.bibliographicCitationPayares E and Martinez-Santos J C 2021 Quantum machine learning for intrusion detection of distributed denial of service attacks: a comparative overview Quantum Computing, Communication, and Simulation ed Hemmer P R and Migdall A L (Online Only, United States: SPIE) p 47 ISBN 9781510642331 9781510642348 URL https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11699/ 2593297/Quantum- machine- learning- for- intrusion- detection- of- distributed- denial- of/10. 1117/12.2593297.fullspa
dcterms.bibliographicCitationKilloran N, Bromley T R, Arrazola J M, Schuld M, Quesada N and Lloyd S 2019 Physical Review Research 1 033063 ISSN 2643-1564 URL https://link.aps.org/doi/10.1103/PhysRevResearch.1.033063spa
dcterms.bibliographicCitationBharti K, Cervera-Lierta A, Kyaw T H, Haug T, Alperin-Lea S, Anand A, Degroote M, Heimonen H, Kottmann J S, Menke T, Mok W K, Sim S, Kwek L C and Aspuru-Guzik A 2021 Noisy intermediate-scale quantum (nisq) algorithms (Preprint 2101.08448)spa
dcterms.bibliographicCitationPreskill J 2018 Quantum 2 79 ISSN 2521-327X URL http://dx.doi.org/10.22331/q-2018-08-06-79spa
dcterms.bibliographicCitationBergholm V, Izaac J, Schuld M, Gogolin C, Alam M S, Ahmed S, Arrazola J M, Blank C, Delgado A, Jahangiri S, McKiernan K, Meyer J J, Niu Z, Sz´ava A and Killoran N 2020 arXiv:1811.04968 [physics, physics:quant-ph] ArXiv: 1811.04968 URL http://arxiv.org/abs/1811.04968spa
dcterms.bibliographicCitationNielsen M A and Chuang I L 2011 Quantum Computation and Quantum Information: 10th Anniversary Edition hardcover ed (Cambridge University Press) ISBN 978-1107002173spa
dcterms.bibliographicCitation] Moore C and Nilsson M 2001 SIAM Journal on Computing 31 799–815 URL https://doi.org/10.1137/ s0097539799355053spa
dcterms.bibliographicCitationLa Cour B R, Andrew Lanham S and Ostrove C I 2018 2018 IEEE International Conference on Rebooting Computing (ICRC) URL http://dx.doi.org/10.1109/ICRC.2018.8638597spa
dcterms.bibliographicCitationSchuld M, Bocharov A, Svore K M and Wiebe N 2020 Physical Review A 101 ISSN 2469-9934 URL http://dx.doi.org/10.1103/PhysRevA.101.032308spa
dcterms.bibliographicCitationGenetics helps determine the shape of a person’s face. URL https://www.medicalnewstoday.com/articles/ asymmetrical-facespa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doi10.1088/1742-6596/2090/1/012171
dc.subject.keywordsParallel Quantumspa
dc.subject.keywordsComputation Approachspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.