Mostrar el registro sencillo del ítem

dc.contributor.authorMontoya Giraldo, Oscar Danilo
dc.contributor.authorGarrido Arévalo, Víctor Manuel
dc.contributor.authorGrisales-Noreña, Luis Fernando
dc.date.accessioned2022-03-14T20:54:44Z
dc.date.available2022-03-14T20:54:44Z
dc.date.issued2021-12-10
dc.date.submitted2022-03-11
dc.identifier.citationMontoya Giraldo, Oscar & Garrido, Victor & Grisales-Noreña, Luis. (2021). Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads. Journal of Physics: Conference Series. 2135. 012009. 10.1088/1742-6596/2135/1/012009.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10619
dc.description.abstractThe problem of the optimal power dispatch of dispersed generators in direct-current networks under the presence of nonlinear loads (constant power terminals) is addressed through a combinatorial optimization strategy by using a master-slave solution methodology. The optimal power generation in the dispersed is solved in the master optimization stage through the application of the vortex-search algorithm. Each combination of the power outputs at the dispersed generation sources is provided to a power flow methodology known as the hyperbolic power flow approach for direct current networks. The main advantage of the proposed optimization method corresponds to the possibility of solving a complex nonlinear programming problem via sequential quadratic programming, which can be easily implemented at any programming language with low computational effort and high-quality results. The computational tests of the master-slave optimization proposal are evaluated in a 21-bus system, and the numerical results are compared with the implementation of the exact nonlinear programming model in the General Algebraic Modeling System (i.e., GAMS). All the computational results are conducted through the MATLAB programming environment licensed by Universidad Tecnologica de Pereira for academic usagespa
dc.format.extent7 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Physics: Conference Series - Vol. 2135 (2021).spa
dc.titleOptimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loadsspa
dcterms.bibliographicCitationMontoya O D, Gil-Gonzalez W, and Grisales-Nore ´ na L F 2018 Optimal Power Dispatch of DGs in DC Power Grids: a ˜ Hybrid Gauss-Seidel-Genetic-Algorithm Methodology for Solving the OPF Problem. WSEAS Transactions on Power Systems, 13(13) pp 335–346spa
dcterms.bibliographicCitationPatterson M, Macia N F, and Kannan A M 2015 Hybrid microgrid model based on solar photovoltaic battery fuel cell system for intermittent load applications. IEEE Transactions on Energy Conversion, 30(1) pp 359–366spa
dcterms.bibliographicCitationEllabban O, Abu-Rub H, and Blaabjerg F 2014 Renewable energy resources: Current status, future prospects and their enabling technology. Renewable Sustainable Energy Rev., 39 pp 748–764.spa
dcterms.bibliographicCitationParhizi S, Lotfi H, Khodaei A, and Bahramirad S 2015 State of the art in research on microgrids: A review. IEEE Access, 3 pp 890–925..spa
dcterms.bibliographicCitationGarces A 2017 Uniqueness of the power flow solutions in low voltage direct current grids. Electr. Power Syst. Res., 151(Supplement C) pp 149–153.spa
dcterms.bibliographicCitationLi J, Liu F, Wang Z, Low S H, and Mei S 2018 Optimal Power Flow in Stand-Alone DC Microgrids. IEEE Trans. Power Syst., 33(5) pp 5496–5506.spa
dcterms.bibliographicCitationGarces A 2018 On Convergence of Newtons Method in Power Flow Study for DC Microgrids. IEEE Trans. Power Syst., 33(5) pp 5770–5777.spa
dcterms.bibliographicCitation] Montoya O D, Gil-Gonzalez W, and Garces A 2019 Optimal Power Flow on DC Microgrids: A Quadratic Convex ´ Approximation. IEEE Trans. Circuits Syst. II, 66(6) pp 1018–1022spa
dcterms.bibliographicCitationSimpson-Porco J W, Dorfler F, and Bullo F 2015 On resistive networks of constant-power devices. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(8) pp 811–815spa
dcterms.bibliographicCitationVelasquez O S, Montoya O D, Garrido-Arevalo V M, and Grisales-Norena L F 2019 Optimal Power Flow in Direct- ˜ Current Power Grids via Black Hole Optimization. Advances in Electrical and Electronic Engineering, 17(1) pp 24–32spa
dcterms.bibliographicCitationAydin O, Tezcan S S, Eke I, and Taplamacioglu M C 2017 Solving the Optimal Power Flow Quadratic Cost Functions using Vortex Search Algorithm. IFAC-PapersOnLine, 50(1) pp 239–244 20th IFAC World Congress.spa
dcterms.bibliographicCitationMontoya O D, Garrido V M, Gil-Gonzalez W, and Grisales-Nore ´ na L F 2019 Power Flow Analysis in DC Grids: Two ˜ Alternative Numerical Methods. IEEE Trans. Circuits Syst. II, pp 1–5.spa
dcterms.bibliographicCitationMontoya O D, Gil-Gonzalez W, and Garces A 2019 Sequential quadratic programming models for solving the OPF ´ problem in DC grids. Electr. Power Syst. Res., 169 pp 18–23.spa
dcterms.bibliographicCitationDogan B and Olmez T 2015 Vortex search algorithm for the analog active filter component selection problem. AEU - International Journal of Electronics and Communications, 69(9) pp 1243–1253.spa
dcterms.bibliographicCitationGAMS Development Corp. GAMS free demo version [Online:] https://www.gams.com/spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doi10.1088/1742-6596/2135/1/012009
dc.subject.keywordsMathematical modelspa
dc.subject.keywordsOptimal Powerspa
dc.subject.keywordsDirect-Current Networksspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.