Mostrar el registro sencillo del ítem

dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorGil-González, Walter
dc.contributor.authorMartin Serra, Federico
dc.contributor.authorDe Angelo, Cristian Hernan
dc.contributor.authorHernández, Jesus C.
dc.date.accessioned2022-02-03T15:24:41Z
dc.date.available2022-02-03T15:24:41Z
dc.date.issued2021-11-17
dc.date.submitted2022-02-02
dc.identifier.citationMontoya, O.D.; Gil-González, W.; Serra, F.M.; De Angelo, C.H.; Hernández, J.C. Global Optimal Stabilization of MT-HVDC Systems: Inverse Optimal Control Approach. Electronics 2021, 10, 2819. https://doi.org/10.3390/electronics10222819spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10437
dc.description.abstractThe stabilization problem of multi-terminal high-voltage direct current (MT-HVDC) systems feeding constant power loads is addressed in this paper using an inverse optimal control (IOC). A hierarchical control structure using a convex optimization model in the secondary control stage and the IOC in the primary control stage is proposed to determine the set of references that allows the stabilization of the network under load variations. The main advantage of the IOC is that this control method ensures the closed-loop stability of the whole MT-HVDC system using a control Lyapunov function to determine the optimal control law. Numerical results in a reduced version of the CIGRE MT-HVDC system show the effectiveness of the IOC to stabilize the system under large disturbance scenarios, such as short-circuit events and topology changes. All the simulations are carried out in the MATLAB/Simulink environment.spa
dc.format.extent14 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceElectronics - vol. 10 n° 22 (2021)spa
dc.titleGlobal Optimal Stabilization of MT-HVDC Systems: Inverse Optimal Control Approachspa
dcterms.bibliographicCitationAlassi, A.; Bañales, S.; Ellabban, O.; Adam, G.; MacIver, C. HVDC transmission: Technology review, market trends and future outlook. Renew. Sustain. Energy Rev. 2019, 112, 530–554spa
dcterms.bibliographicCitationXiang, X.; Merlin, M.M.C.; Green, T.C. Cost analysis and comparison of HVAC, LFAC and HVDC for offshore wind power connection. In Proceedings of the 12th IET International Conference on AC and DC Power Transmission (ACDC 2016), Beijing, China, 28–29 May 2016; pp. 1–6spa
dcterms.bibliographicCitationElnady, A.; Adam, A. Decoupled State-Feedback Based Control Scheme for the Distributed Generation System. Electr. Power Components Syst. 2018, 46, 494–510spa
dcterms.bibliographicCitationSerra, F.M.; Angelo, C.H.D. Control of a battery charger for electric vehicles with unity power factor. Trans. Energy Syst. Eng. Appl. 2021, 2, 32–44spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Garces, A. Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation. IEEE Trans. Circuits Syst. II Exp. Briefs 2018, 66, 1018–1022spa
dcterms.bibliographicCitationYang, W.; Xu, Z.; Han, Z. Co-ordinated hierarchical control strategy for multi-infeed HVDC systems. IEE Proc.-Gener. Transm. Distrib. 2002, 149, 242.spa
dcterms.bibliographicCitationFan, B.; Wang, K.; Zheng, Z.; Li, Y.; Wu, X. Hierarchical control system of modular multilevel converter used in high-voltage direct current transmission. In Proceedings of the 2014 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, 22–25 October 2014spa
dcterms.bibliographicCitationRamirez, D.A.; Garcés, A.; Mora-Flórez, J.J. A Convex Approximation for the Tertiary Control of Unbalanced Microgrids. Electr. Power Syst. Res. 2021, 199, 107423.spa
dcterms.bibliographicCitationEgea-Alvarez, A.; Beerten, J.; Hertem, D.V.; Gomis-Bellmunt, O. Primary and secondary power control of multiterminal HVDC grids. In Proceedings of the 10th IET International Conference on AC and DC Power Transmission (ACDC 2012), Birmingham, UK, 4–6 December 2012.spa
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Garces, A. Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach. Int. J. Electr. Power Energy Syst. 2019, 110, 588–597spa
dcterms.bibliographicCitationSimiyu, P.; Xin, A.; Wang, K.; Adwek, G.; Salman, S. Multiterminal Medium Voltage DC Distribution Network Hierarchical Control. Electronics 2020, 9, 506spa
dcterms.bibliographicCitationZonetti, D.; Ortega, R.; Benchaib, A. A globally asymptotically stable decentralized PI controller for multi-terminal high-voltage DC transmission systems. In Proceedings of the 2014 European Control Conference (ECC), Strasbourg, France, 24–27 June 2014spa
dcterms.bibliographicCitationHannan, M.A.; Hussin, I.; Ker, P.J.; Hoque, M.M.; Lipu, M.S.H.; Hussain, A.; Rahman, M.S.A.; Faizal, C.W.M.; Blaabjerg, F. Advanced Control Strategies of VSC Based HVDC Transmission System: Issues and Potential Recommendations. IEEE Access 2018, 6, 78352–78369.spa
dcterms.bibliographicCitationSimorgh, A.; Razminia, A.; Mobayen, S.; Baleanu, D. Optimal Control of a MIMO Bioreactor System Using Direct Approach. Int. J. Control. Autom. Syst. 2021, 19, 1159–1174.spa
dcterms.bibliographicCitationMobayen, S. Optimal LMI-based state feedback stabilizer for uncertain nonlinear systems with time-Varying uncertainties and disturbances. Complexity 2016, 21, 356–362.spa
dcterms.bibliographicCitationVega, C.; Alzate, R. Inverse optimal control on electric power conversion. In Proceedings of the 2014 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 5–7 November 2014spa
dcterms.bibliographicCitationJohnson, M.; Aghasadeghi, N.; Bretl, T. Inverse optimal control for deterministic continuous-time nonlinear systems. In Proceedings of the 52nd IEEE Conference on Decision and Control, Firenze, Italy, 10–13 December 2013.spa
dcterms.bibliographicCitationRaza, A.; Shakeel, A.; Altalbe, A.; OAlassafi, M.; Yasin, A.R. Impacts of MT-HVDC Systems on Enhancing the Power Transmission Capability. Appl. Sci. 2020, 10, 242.spa
dcterms.bibliographicCitationMohammadi, F.; Nazri, G.A.; Saif, M. An improved droop-based control strategy for MT-HVDC systems. Electronics 2020, 9, 87.spa
dcterms.bibliographicCitationGavriluta, C.; Candela, I.; Citro, C.; Luna, A.; Rodriguez, P. Design considerations for primary control in multi-terminal VSC-HVDC grids. Electr. Power Syst. Res. 2015, 122, 33–41spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Garces, A.; Serra, F.; Hernández, J.C. Stabilization of MT-HVDC grids via passivity-based control and convex optimization. Electr. Power Syst. Res. 2021, 196, 107273spa
dcterms.bibliographicCitationDe Persis, C.; Weitenberg, E.R.; Dörfler, F. A power consensus algorithm for DC microgrids. Automatica 2018, 89, 364 – 375.spa
dcterms.bibliographicCitationTucci, M.; Meng, L.; Guerrero, J.M.; Ferrari-Trecate, G. Stable current sharing and voltage balancing in DC microgrids: A consensus-based secondary control layer. Automatica 2018, 95, 1–13.spa
dcterms.bibliographicCitationMagne, P.; Nahid-Mobarakeh, B.; Pierfederici, S. General Active Global Stabilization of Multiloads DC-Power Networks. IEEE Trans. Power Electron. 2012, 27, 1788–1798.spa
dcterms.bibliographicCitationVafamand, N.; Khooban, M.H.; Dragiˇcevi´c, T.; Blaabjerg, F. Networked Fuzzy Predictive Control of Power Buffers for Dynamic Stabilization of DC Microgrids. IEEE Trans. Ind. Electron. 2019, 66, 1356–1362spa
dcterms.bibliographicCitationKardan, M.A.; Asemani, M.H.; Khayatian, A.; Vafamand, N.; Khooban, M.H.; Dragiˇcevi´c, T.; Blaabjerg, F. Improved Stabilization of Nonlinear DC Microgrids: Cubature Kalman Filter Approach. IEEE Trans. Ind. Appl. 2018, 54, 5104–5112.spa
dcterms.bibliographicCitationMahmoudi, H.; Aleenejad, M.; Ahmadi, R. Modulated model predictive control of modular multilevel converters in VSC-HVDC systems. IEEE Trans. Power Del. 2017, 33, 2115–2124spa
dcterms.bibliographicCitation. Garces, A.; Montoya, D.; Torres, R. Optimal power flow in multiterminal HVDC systems considering DC/DC converters. In Proceedings of the 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), Santa Clara, CA, USA, 8–10 June 2016.spa
dcterms.bibliographicCitationSepulchre, R.; Jankovi´c, M.; Kokotovi´c, P.V. Constructive Nonlinear Control; Springer: London, UK, 1997spa
dcterms.bibliographicCitationAlanis, A.Y.; Lastire, E.A.; Arana-Daniel, N.; Lopez-Franco, C. Inverse Optimal Control with Speed Gradient for a Power Electric System Using a Neural Reduced Model. Math. Probl. Eng. 2014, 2014, 1–21spa
dcterms.bibliographicCitationPérez, C.J.V.; Castaño, R.A. Inverse optimal control as an alternative to regulate a Boost DC-DC power converter. Rev. Tecnura 2015, 19, 65spa
dcterms.bibliographicCitationLi, J.; Liu, F.; Wang, Z.; Low, S.H.; Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5496–5506spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Garces, A. Sequential quadratic programming models for solving the OPF problem in DC grids. Electr. Power Syst. Res. 2019, 169, 18–23spa
dcterms.bibliographicCitationGil-González, W.; Molina-Cabrera, A.; Montoya, O.D.; Grisales-Noreña, L.F. An MI-SDP Model for Optimal Location and Sizing of Distributed Generators in DC Grids That Guarantees the Global Optimum. Appl. Sci. 2020, 10, 7681spa
dcterms.bibliographicCitationMontoya, O.D. Numerical Approximation of the Maximum Power Consumption in DC-MGs with CPLs via an SDP Model. IEEE Trans. Circuits Syst. II Exp. Briefs 2018, 66, 642–646.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.3390/electronics10222819
dc.subject.keywordsInverse optimal controlspa
dc.subject.keywordsMT-HVDC systemsspa
dc.subject.keywordsGlobal stabilizationspa
dc.subject.keywordsLarge disturbancesspa
dc.subject.keywordsKron’s reductionspa
dc.subject.keywordsSemidefinite programmingspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.