Mostrar el registro sencillo del ítem

dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorNarváez, D D
dc.contributor.authorRamírez Vanegas, C A
dc.date.accessioned2022-02-03T15:06:17Z
dc.date.available2022-02-03T15:06:17Z
dc.date.issued2021-06-10
dc.date.submitted2022-02-02
dc.identifier.citationMontoya Giraldo, Oscar & Narváez, D & Vanegas, C. (2021). Mathematical and physical techniques of modeling and simulation of pattern recognition in the stock market. Journal of Physics: Conference Series. 2073. 012009. 10.1088/1742-6596/2073/1/012009spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10436
dc.description.abstractThe following article presents the analysis through mathematical and physical techniques of large databases, which are very common today, due to the large number of variables (especially in the information and physics industry) and the amount of information that results from a process, therefore an analysis is necessary that allows the Decision in a responsible manner, looking for scientific criteria that support said decisions, in our case a database of the forex system will be taken. Initially, a study and calculation of different measurements between the samples and their characteristics will be carried out to make a good prediction of the data and their behavior using different classification methods inspired by basic sciences. Below is an explanation of the techniques based on the analysis of data components and the correlations that exist between the variables, which is a technique widely used in physical processes to determine the correlations between variables.spa
dc.format.extent8 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Physics: Conference Series, vol. 2073, (2021).spa
dc.titleMathematical and physical techniques of modeling and simulation of pattern recognition in the stock marketspa
dcterms.bibliographicCitationGarcía P, Sancho J L, Figueiras A 2010 Clasificación de patrones con datos faltantes: una revision Neural Comput. Appl. 19(2) 263spa
dcterms.bibliographicCitationBishop C M 1995 Neural Networks for Pattern Recognition (New York: Oxford University Press)spa
dcterms.bibliographicCitationDeng X, Liu Q, Deng Y, Mahadevan S 2016 An improved method to construct basic probability assignment based on the confusion matrix for classification problem Inf. Sci. 340 250spa
dcterms.bibliographicCitationRajendran S, Kaul A, Nath R, Arora A, Chauhan S 2014 Comparison of PCA and 2D-PCA on Indian faces International Conference on Signal Propagation and Computer Technology Technical (Ajmer: Institute of Electrical and Electronics Engineers) p 561spa
dcterms.bibliographicCitationGao Q, Sun S 2018 Speech recognition of confusable word based on ideal distance matrix IEEE/ACIS 17th International Conference on Computer and Information Science (Singapore: Institute of Electrical and Electronics Engineers) p 335spa
dcterms.bibliographicCitationXiang S, Nie F, Zhang C 2008 Learning a mahalanobis distance metric for data clustering and classification Pattern Recognition 41(12) 3600spa
dcterms.bibliographicCitationJing C, Hou J 2015 Enfoques de clasificación de fallas basados en SVM y PCA para procesos industriales complicados Neurocomputing 167 636spa
dcterms.bibliographicCitationRouabhia C, Hamdaoui K, Tebbikh H 2010 Weighted matrix distance metric for face images classification International Conference on Machine and Web Intelligence (Algeria: Institute of Electrical and Electronics Engineers)spa
dcterms.bibliographicCitationKoyuturk M, Grama A, Ramakrishnan N 2005 Compression, clustering, and pattern discovery in very highdimensional discrete-attribute data sets IEEE Transactions on Knowledge and Data Engineering 17(4) 447spa
dcterms.bibliographicCitationArya S, Mount D, Netanyahu N, Silverman R, Wu A 1998 An optimal algorithm for approximate nearest neighbor searching fixed dimensions Journal of the ACM 45(6) 891spa
dcterms.bibliographicCitationAbello J, Korn A 2002 A system for visualizing massive multidigraph IEEE Trans. Visual Comput. Graphics 8(1) 21spa
dcterms.bibliographicCitationBeringer J, Hüllermeier E 2006 Online clustering of parallel data streams Data Knowl. Eng. 58(2) 180spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doi10.1088/1742-6596/2073/1/012009
dc.subject.keywordsMathematical techniquesspa
dc.subject.keywordsPhysical of modelingspa
dc.subject.keywordsSimulation of pattern recognitionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.