Mostrar el registro sencillo del ítem
Optimal Power Dispatch of Distributed Generators in Direct Current Networks Using a Master–Slave Methodology that Combines the Salp Swarm Algorithm and the Successive Approximation Method
dc.contributor.author | Rosales Muñoz, Andrés Alfonso | |
dc.contributor.author | Grisales-Noreña, Luis Fernando | |
dc.contributor.author | Montano, Jhon | |
dc.contributor.author | Montoya, Oscar Danilo | |
dc.contributor.author | Giral-Ramírez, Diego Armando | |
dc.date.accessioned | 2022-02-02T20:45:48Z | |
dc.date.available | 2022-02-02T20:45:48Z | |
dc.date.issued | 2021-11-18 | |
dc.date.submitted | 2022-02-01 | |
dc.identifier.citation | Rosales Muñoz, A.A.; Grisales-Noreña, L.F.; Montano, J.; Montoya, O.D.; Giral-Ramírez, D.A. Optimal Power Dispatch of Distributed Generators in Direct Current Networks Using a Master–Slave Methodology that Combines the Salp Swarm Algorithm and the Successive Approximation Method. Electronics 2021, 10, 2837. https://doi.org/10.3390/electronics10222837 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10434 | |
dc.description.abstract | This paper addresses the Optimal Power Flow (OPF) problem in Direct Current (DC) networks by considering the integration of Distributed Generators (DGs). In order to model said problem, this study employs a mathematical formulation that has, as the objective function, the reduction in power losses associated with energy transport and that considers the set of constraints that compose DC networks in an environment of distributed generation. To solve this mathematical formulation, a master–slave methodology that combines the Salp Swarm Algorithm (SSA) and the Successive Approximations (SA) method was used here. The effectiveness, repeatability, and robustness of the proposed solution methodology was validated using two test systems (the 21- and 69-node systems), five other optimization methods reported in the specialized literature, and three different penetration levels of distributed generation: 20%, 40%, and 60% of the power provided by the slack node in the test systems in an environment with no DGs (base case). All simulations were executed 100 times for each solution methodology in the different test scenarios. The purpose of this was to evaluate the repeatability of the solutions provided by each technique by analyzing their minimum and average power losses and required processing times. The results show that the proposed solution methodology achieved the best trade-off between (minimum and average) power loss reduction and processing time for networks of any size. | spa |
dc.format.extent | 27 Páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Electronics - vol. 10 n° 22 (2021) | spa |
dc.title | Optimal Power Dispatch of Distributed Generators in Direct Current Networks Using a Master–Slave Methodology that Combines the Salp Swarm Algorithm and the Successive Approximation Method | spa |
dcterms.bibliographicCitation | Gurven, M.; Walker, R. Energetic demand of multiple dependents and the evolution of slow human growth. Proc. R. Soc. B Biol. Sci. 2006, 273, 835–841. | spa |
dcterms.bibliographicCitation | Gupta, B. R. Generation of Electrical Energy; S. Chand Publishing: New Delhi, India, 2017; pp. 1–616. Available online: https://books.google.com.co/books?hl=es&lr=&id=bERxDwAAQBAJ&oi=fnd&pg=PR1&dq=Generation+of+Electrical+ Energy&ots=vxlWpcSTf5&sig=vzzX7SReWRerVqawXEXGe77LQlE&redir_esc=y#v=onepage&q=Generation%20of%20 Electrical%20Energy&f=false (accessed on 16 November 2021). | spa |
dcterms.bibliographicCitation | Kyriakopoulos, G.L.; Arabatzis, G. Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes. Renew. Sustain. Energy Rev. 2016, 56, 1044–1067 | spa |
dcterms.bibliographicCitation | Krauter, S. Solar Electric Power Generation; Springer: Berlin/Heidelberg, Germany, 2006; Volume 10, pp. 978–983 | spa |
dcterms.bibliographicCitation | Grigsby, L.L. Electric Power Generation, Transmission, and Distribution; CRC Press: Boca Raton, FL, USA, 2007. doi:10.1201/9781420009255 | spa |
dcterms.bibliographicCitation | Christensen, L.R.; Greene, W.H. Economies of scale in US electric power generation. J. Political Econ. 1976, 84, 655–676. | spa |
dcterms.bibliographicCitation | Grisales-Noreña, L.F.; Montoya, O.D.; Hincapié-Isaza, R.A.; Echeverri, M.G.; Perea-Moreno, A.J. Optimal Location and Sizing of DGs in DC Networks Using a Hybrid Methodology Based on the PPBIL Algorithm and the VSA. Mathematics 2021, 9, 1913. doi:10.3390/math9161913 | spa |
dcterms.bibliographicCitation | Sánchez, L.G.G. Localización óptima de generación Distribuida en Sistemas de Distribución Trifásicos con Carga Variable en el Tiempo Utilizando el método de Monte Carlo. Ph.D. Thesis, Universitat Politècnica de Catalunya, Escola Universitària d’Enginyeria, Barcelona, Spain, 2012 | spa |
dcterms.bibliographicCitation | Bove, Roberto y Lunghi, P. Electric power generation from landfill gas using traditional and innovative technologies technologies. Energy Convers. Manag. 2006, 47, 1391–1401 | spa |
dcterms.bibliographicCitation | Pan, Huilin, et al. Environmental Regulations and Productivity Growth: The Case of Fossil-fueled Electric Power Generation. Economy) 1983, 91, 654–674. doi:10.1086/261170 | spa |
dcterms.bibliographicCitation | Koohi-Fayegh, S.; Rosen, M.A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047 | spa |
dcterms.bibliographicCitation | Pan, H.; Hu, Y.; Chena, L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage Energy Environ. Sci. 2013, 6, 2338. doi:10.1086/261170 | spa |
dcterms.bibliographicCitation | Joseph, A.; Shahidehpour, M. Battery Storage Systems in Electrical Power Systems Power Systems; J. Energy Storage 2017, 12, 87–107. doi:10.1016/j.est.2017.04.004. | spa |
dcterms.bibliographicCitation | Peters, J.F.; Baumann, M.; Zimmermann, B.; Braun, J.; Weil, M. The environmental impact of Li-Ion batteries and the role of key parameters—A review Renew. Sustain. Energy Rev. 2017, 67, 491–506. doi:10.1016/j.rser.2016.08.039 | spa |
dcterms.bibliographicCitation | Kumar, J.; Agarwal, A.; Agarwal, V. A review on overall control of DC microgrids. J. Energy Storage 2019, 21, 113–138 | spa |
dcterms.bibliographicCitation | Grisales-Noreña, L.F.; Ramos-Paja, C.A.; Gonzalez-Montoya, D.; Alcalá, G.; Hernandez-Escobedo, Q. Energy management in PV based microgrids designed for the Universidad Nacional de Colombia. Sustainability 2020, 12, 1219 | spa |
dcterms.bibliographicCitation | Franck, C.M. HVDC circuit breakers: A review identifying future research needs. IEEE Trans. Power Deliv. 2011, 26, 998–1007. | spa |
dcterms.bibliographicCitation | Momoh, J.; Koessler, R.; Bond, M.; Stott, B.; Sun, D.; Papalexopoulos, A.; Ristanovic, P. Challenges to optimal power flow. IEEE Trans. Power Syst. 1997, 12, 444–455 | spa |
dcterms.bibliographicCitation | Ocampo-Toro, J.; Garzon-Rivera, O.; Grisales-Noreña, L.; Montoya-Giraldo, O.; Gil-González, W. Optimal Power Dispatch in Direct Current Networks to Reduce Energy Production Costs and CO2 Emissions Using the Antlion Optimization Algorithm. Arab. J. Sci. Eng. 2021, 46, 9995-10006. doi:10.1007/s13369-021-05831-0. | spa |
dcterms.bibliographicCitation | Grisales-Noreña, L.F.; Garzón Rivera, O.D.; Ocampo Toro, J.A.; Ramos-Paja, C.A.; Rodriguez Cabal, M.A. Metaheuristic Optimization Methods for Optimal Power Flow Analysis in DC Distribution Networks Trans. Energy Syst. Eng. Appl. 2020, 1, 13–31. doi:10.32397/tesea.vol1.n1.2. | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Grisales-Noreña, L.; González-Montoya, D.; Ramos-Paja, C.; Garces, A. Linear power flow formulation for low-voltage DC power grids. Electr. Power Syst. Res. 2018, 163, 375–381. | spa |
dcterms.bibliographicCitation | Heuristic and Metaheuristic Optimization Techniques with Application to Power Systems; Technical University of Iasi, D. Mangeron Blvd.: Iasi, Romania, 2010. | spa |
dcterms.bibliographicCitation | Orosz, T.; Rassõlkin, A.; Kallaste, A.; Arsénio, P.; Pánek, D.; Kaska, J.; Karban, P. Robust design optimization and emerging technologies for electrical machines: Challenges and open problems. Appl. Sci. 2020, 10, 6653. | spa |
dcterms.bibliographicCitation | Li, J.; Liu, F.; Wang, Z.; Low, S.H.; Mei, S. Optimal power flow in stand-alone DC microgrids. IEEE Trans. Power Syst. 2018, 33, 5496–5506. | spa |
dcterms.bibliographicCitation | Montoya, O.; Gil-González, W.; Grisales-Noreña, L. Optimal Power Dispatch of DGs in DC Power Grids: A Hybrid Gauss-SeidelGenetic-Algorithm Methodology for Solving the OPF Problem; Wseas Trans. Power Syst. 2018, 13, 335–346. | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Gil-González, W.; Garces, A. Sequential quadratic programming models for solving the OPF problem in DC grids. Electr. Power Syst. Res. 2019, 169, 18–23 | spa |
dcterms.bibliographicCitation | Garzon-Rivera, O.; Ocampo, J.; Grisales-Noreña, L.; Montoya, O.; Rojas-Montano, J. Optimal power flow in Direct Current Networks using the antlion optimizer. Stat. Optim. Inf. Comput. 2020, 8, 846–857 | spa |
dcterms.bibliographicCitation | Garzon-Rivera, O.; Ocampo, J.; Grisales-Noreña, L.; Montoya, O.; Rojas-Montano, J. Optimal power flow in Direct Current Networks using the antlion optimizer. Stat. Optim. Inf. Comput. 2020, 8, 846–857 | spa |
dcterms.bibliographicCitation | Velasquez, O.S.; Montoya Giraldo, O.D.; Garrido Arevalo, V.M.; Grisales Norena, L.F. Optimal power flow in direct-current power grids via black hole optimization. Adv. Electr. Electron. Eng. 2019, 17, 24–32. | spa |
dcterms.bibliographicCitation | Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191 | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Garrido, V.M.; Gil-González, W.; Grisales-Noreña, L.F. Power flow analysis in DC grids: Two alternative numerical methods. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 1865–1869. | spa |
dcterms.bibliographicCitation | Abualigah, L.; Shehab, M.; Alshinwan, M.; Alabool, H. Salp swarm algorithm: a comprehensive survey. Neural Comput. Appl. 2020, 32, 11195–11215. | spa |
dcterms.bibliographicCitation | Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-international conference on neural networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. | spa |
dcterms.bibliographicCitation | Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184 | spa |
dcterms.bibliographicCitation | Chelouah, R.; Siarry, P. A continuous genetic algorithm designed for the global optimization of multimodal functions. J. Heuristics 2000, 6, 191–213 | spa |
dcterms.bibliographicCitation | Zawbaa, H.M.; Emary, E.; Parv, B. Feature selection based on antlion optimization algorithm. In Proceedings of the 2015 Third World Conference on Complex Systems (WCCS), Marrakech, Morocco, 23–25 November 2015; pp. 1–7. | spa |
dcterms.bibliographicCitation | Mirjalili, S.; Jangir, P.; Mirjalili, S.Z.; Saremi, S.; Trivedi, I.N. Optimization of problems with multiple objectives using the multi-verse optimization algorithm. Knowl.-Based Syst. 2017, 134, 50–71 | spa |
dcterms.bibliographicCitation | Gil-González, W.; Montoya, O.D.; Holguín, E.; Garces, A.; Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J. Energy Storage 2019, 21, 1–8. | spa |
dcterms.bibliographicCitation | Gil-González, W.; Montoya, O.D.; Holguín, E.; Garces, A.; Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J. Energy Storage 2019, 21, 1–8. | spa |
dcterms.bibliographicCitation | . Garcés, A. On the convergence of Newton’s method in power flow studies for DC microgrids. IEEE Trans. Power Syst. 2018, 33, 5770–5777 | spa |
dcterms.bibliographicCitation | Rosales-Muñoz, A.A.; Grisales-Noreña, L.F.; Montano, J.; Montoya, O.D.; Perea-Moreno, A.J. Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Direct Current Electrical Networks. Sustainability 2021, 13, 8703. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.doi | https://doi.org/10.3390/electronics10222837 | |
dc.subject.keywords | Optimal power flow | spa |
dc.subject.keywords | Power flow problem | spa |
dc.subject.keywords | Optimization algorithms | spa |
dc.subject.keywords | DC networks | spa |
dc.subject.keywords | Electrical energy | spa |
dc.subject.keywords | Combinatorial optimization | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.