Mostrar el registro sencillo del ítem

dc.contributor.authorRosales Muñoz, Andrés Alfonso
dc.contributor.authorGrisales-Noreña, Luis Fernando
dc.contributor.authorMontano, Jhon
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorGiral-Ramírez, Diego Armando
dc.date.accessioned2022-02-02T20:45:48Z
dc.date.available2022-02-02T20:45:48Z
dc.date.issued2021-11-18
dc.date.submitted2022-02-01
dc.identifier.citationRosales Muñoz, A.A.; Grisales-Noreña, L.F.; Montano, J.; Montoya, O.D.; Giral-Ramírez, D.A. Optimal Power Dispatch of Distributed Generators in Direct Current Networks Using a Master–Slave Methodology that Combines the Salp Swarm Algorithm and the Successive Approximation Method. Electronics 2021, 10, 2837. https://doi.org/10.3390/electronics10222837spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10434
dc.description.abstractThis paper addresses the Optimal Power Flow (OPF) problem in Direct Current (DC) networks by considering the integration of Distributed Generators (DGs). In order to model said problem, this study employs a mathematical formulation that has, as the objective function, the reduction in power losses associated with energy transport and that considers the set of constraints that compose DC networks in an environment of distributed generation. To solve this mathematical formulation, a master–slave methodology that combines the Salp Swarm Algorithm (SSA) and the Successive Approximations (SA) method was used here. The effectiveness, repeatability, and robustness of the proposed solution methodology was validated using two test systems (the 21- and 69-node systems), five other optimization methods reported in the specialized literature, and three different penetration levels of distributed generation: 20%, 40%, and 60% of the power provided by the slack node in the test systems in an environment with no DGs (base case). All simulations were executed 100 times for each solution methodology in the different test scenarios. The purpose of this was to evaluate the repeatability of the solutions provided by each technique by analyzing their minimum and average power losses and required processing times. The results show that the proposed solution methodology achieved the best trade-off between (minimum and average) power loss reduction and processing time for networks of any size.spa
dc.format.extent27 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceElectronics - vol. 10 n° 22 (2021)spa
dc.titleOptimal Power Dispatch of Distributed Generators in Direct Current Networks Using a Master–Slave Methodology that Combines the Salp Swarm Algorithm and the Successive Approximation Methodspa
dcterms.bibliographicCitationGurven, M.; Walker, R. Energetic demand of multiple dependents and the evolution of slow human growth. Proc. R. Soc. B Biol. Sci. 2006, 273, 835–841.spa
dcterms.bibliographicCitationGupta, B. R. Generation of Electrical Energy; S. Chand Publishing: New Delhi, India, 2017; pp. 1–616. Available online: https://books.google.com.co/books?hl=es&lr=&id=bERxDwAAQBAJ&oi=fnd&pg=PR1&dq=Generation+of+Electrical+ Energy&ots=vxlWpcSTf5&sig=vzzX7SReWRerVqawXEXGe77LQlE&redir_esc=y#v=onepage&q=Generation%20of%20 Electrical%20Energy&f=false (accessed on 16 November 2021).spa
dcterms.bibliographicCitationKyriakopoulos, G.L.; Arabatzis, G. Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes. Renew. Sustain. Energy Rev. 2016, 56, 1044–1067spa
dcterms.bibliographicCitationKrauter, S. Solar Electric Power Generation; Springer: Berlin/Heidelberg, Germany, 2006; Volume 10, pp. 978–983spa
dcterms.bibliographicCitationGrigsby, L.L. Electric Power Generation, Transmission, and Distribution; CRC Press: Boca Raton, FL, USA, 2007. doi:10.1201/9781420009255spa
dcterms.bibliographicCitationChristensen, L.R.; Greene, W.H. Economies of scale in US electric power generation. J. Political Econ. 1976, 84, 655–676.spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Montoya, O.D.; Hincapié-Isaza, R.A.; Echeverri, M.G.; Perea-Moreno, A.J. Optimal Location and Sizing of DGs in DC Networks Using a Hybrid Methodology Based on the PPBIL Algorithm and the VSA. Mathematics 2021, 9, 1913. doi:10.3390/math9161913spa
dcterms.bibliographicCitationSánchez, L.G.G. Localización óptima de generación Distribuida en Sistemas de Distribución Trifásicos con Carga Variable en el Tiempo Utilizando el método de Monte Carlo. Ph.D. Thesis, Universitat Politècnica de Catalunya, Escola Universitària d’Enginyeria, Barcelona, Spain, 2012spa
dcterms.bibliographicCitationBove, Roberto y Lunghi, P. Electric power generation from landfill gas using traditional and innovative technologies technologies. Energy Convers. Manag. 2006, 47, 1391–1401spa
dcterms.bibliographicCitationPan, Huilin, et al. Environmental Regulations and Productivity Growth: The Case of Fossil-fueled Electric Power Generation. Economy) 1983, 91, 654–674. doi:10.1086/261170spa
dcterms.bibliographicCitationKoohi-Fayegh, S.; Rosen, M.A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047spa
dcterms.bibliographicCitationPan, H.; Hu, Y.; Chena, L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage Energy Environ. Sci. 2013, 6, 2338. doi:10.1086/261170spa
dcterms.bibliographicCitationJoseph, A.; Shahidehpour, M. Battery Storage Systems in Electrical Power Systems Power Systems; J. Energy Storage 2017, 12, 87–107. doi:10.1016/j.est.2017.04.004.spa
dcterms.bibliographicCitationPeters, J.F.; Baumann, M.; Zimmermann, B.; Braun, J.; Weil, M. The environmental impact of Li-Ion batteries and the role of key parameters—A review Renew. Sustain. Energy Rev. 2017, 67, 491–506. doi:10.1016/j.rser.2016.08.039spa
dcterms.bibliographicCitationKumar, J.; Agarwal, A.; Agarwal, V. A review on overall control of DC microgrids. J. Energy Storage 2019, 21, 113–138spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Ramos-Paja, C.A.; Gonzalez-Montoya, D.; Alcalá, G.; Hernandez-Escobedo, Q. Energy management in PV based microgrids designed for the Universidad Nacional de Colombia. Sustainability 2020, 12, 1219spa
dcterms.bibliographicCitationFranck, C.M. HVDC circuit breakers: A review identifying future research needs. IEEE Trans. Power Deliv. 2011, 26, 998–1007.spa
dcterms.bibliographicCitationMomoh, J.; Koessler, R.; Bond, M.; Stott, B.; Sun, D.; Papalexopoulos, A.; Ristanovic, P. Challenges to optimal power flow. IEEE Trans. Power Syst. 1997, 12, 444–455spa
dcterms.bibliographicCitationOcampo-Toro, J.; Garzon-Rivera, O.; Grisales-Noreña, L.; Montoya-Giraldo, O.; Gil-González, W. Optimal Power Dispatch in Direct Current Networks to Reduce Energy Production Costs and CO2 Emissions Using the Antlion Optimization Algorithm. Arab. J. Sci. Eng. 2021, 46, 9995-10006. doi:10.1007/s13369-021-05831-0.spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Garzón Rivera, O.D.; Ocampo Toro, J.A.; Ramos-Paja, C.A.; Rodriguez Cabal, M.A. Metaheuristic Optimization Methods for Optimal Power Flow Analysis in DC Distribution Networks Trans. Energy Syst. Eng. Appl. 2020, 1, 13–31. doi:10.32397/tesea.vol1.n1.2.spa
dcterms.bibliographicCitationMontoya, O.D.; Grisales-Noreña, L.; González-Montoya, D.; Ramos-Paja, C.; Garces, A. Linear power flow formulation for low-voltage DC power grids. Electr. Power Syst. Res. 2018, 163, 375–381.spa
dcterms.bibliographicCitationHeuristic and Metaheuristic Optimization Techniques with Application to Power Systems; Technical University of Iasi, D. Mangeron Blvd.: Iasi, Romania, 2010.spa
dcterms.bibliographicCitationOrosz, T.; Rassõlkin, A.; Kallaste, A.; Arsénio, P.; Pánek, D.; Kaska, J.; Karban, P. Robust design optimization and emerging technologies for electrical machines: Challenges and open problems. Appl. Sci. 2020, 10, 6653.spa
dcterms.bibliographicCitationLi, J.; Liu, F.; Wang, Z.; Low, S.H.; Mei, S. Optimal power flow in stand-alone DC microgrids. IEEE Trans. Power Syst. 2018, 33, 5496–5506.spa
dcterms.bibliographicCitationMontoya, O.; Gil-González, W.; Grisales-Noreña, L. Optimal Power Dispatch of DGs in DC Power Grids: A Hybrid Gauss-SeidelGenetic-Algorithm Methodology for Solving the OPF Problem; Wseas Trans. Power Syst. 2018, 13, 335–346.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Garces, A. Sequential quadratic programming models for solving the OPF problem in DC grids. Electr. Power Syst. Res. 2019, 169, 18–23spa
dcterms.bibliographicCitationGarzon-Rivera, O.; Ocampo, J.; Grisales-Noreña, L.; Montoya, O.; Rojas-Montano, J. Optimal power flow in Direct Current Networks using the antlion optimizer. Stat. Optim. Inf. Comput. 2020, 8, 846–857spa
dcterms.bibliographicCitationGarzon-Rivera, O.; Ocampo, J.; Grisales-Noreña, L.; Montoya, O.; Rojas-Montano, J. Optimal power flow in Direct Current Networks using the antlion optimizer. Stat. Optim. Inf. Comput. 2020, 8, 846–857spa
dcterms.bibliographicCitationVelasquez, O.S.; Montoya Giraldo, O.D.; Garrido Arevalo, V.M.; Grisales Norena, L.F. Optimal power flow in direct-current power grids via black hole optimization. Adv. Electr. Electron. Eng. 2019, 17, 24–32.spa
dcterms.bibliographicCitationMirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191spa
dcterms.bibliographicCitationMontoya, O.D.; Garrido, V.M.; Gil-González, W.; Grisales-Noreña, L.F. Power flow analysis in DC grids: Two alternative numerical methods. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 1865–1869.spa
dcterms.bibliographicCitationAbualigah, L.; Shehab, M.; Alshinwan, M.; Alabool, H. Salp swarm algorithm: a comprehensive survey. Neural Comput. Appl. 2020, 32, 11195–11215.spa
dcterms.bibliographicCitationKennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-international conference on neural networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.spa
dcterms.bibliographicCitationHatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184spa
dcterms.bibliographicCitationChelouah, R.; Siarry, P. A continuous genetic algorithm designed for the global optimization of multimodal functions. J. Heuristics 2000, 6, 191–213spa
dcterms.bibliographicCitationZawbaa, H.M.; Emary, E.; Parv, B. Feature selection based on antlion optimization algorithm. In Proceedings of the 2015 Third World Conference on Complex Systems (WCCS), Marrakech, Morocco, 23–25 November 2015; pp. 1–7.spa
dcterms.bibliographicCitationMirjalili, S.; Jangir, P.; Mirjalili, S.Z.; Saremi, S.; Trivedi, I.N. Optimization of problems with multiple objectives using the multi-verse optimization algorithm. Knowl.-Based Syst. 2017, 134, 50–71spa
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Holguín, E.; Garces, A.; Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J. Energy Storage 2019, 21, 1–8.spa
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Holguín, E.; Garces, A.; Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J. Energy Storage 2019, 21, 1–8.spa
dcterms.bibliographicCitation. Garcés, A. On the convergence of Newton’s method in power flow studies for DC microgrids. IEEE Trans. Power Syst. 2018, 33, 5770–5777spa
dcterms.bibliographicCitationRosales-Muñoz, A.A.; Grisales-Noreña, L.F.; Montano, J.; Montoya, O.D.; Perea-Moreno, A.J. Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Direct Current Electrical Networks. Sustainability 2021, 13, 8703.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.3390/electronics10222837
dc.subject.keywordsOptimal power flowspa
dc.subject.keywordsPower flow problemspa
dc.subject.keywordsOptimization algorithmsspa
dc.subject.keywordsDC networksspa
dc.subject.keywordsElectrical energyspa
dc.subject.keywordsCombinatorial optimizationspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.