Mostrar el registro sencillo del ítem

dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorGil-González, Walter
dc.contributor.authorMolina-Cabrera, Alexander
dc.date.accessioned2022-02-02T20:36:12Z
dc.date.available2022-02-02T20:36:12Z
dc.date.issued2021-04-28
dc.date.submitted2022-01-28
dc.identifier.citationMontoya, O.D., Gil-González, W. and Molina-Cabrera, A., Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sources.. DYNA, 88(217), pp. 178-184, April - June, 2021spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10432
dc.description.abstractThis paper addresses the optimal location and sizing of photovoltaic (PV) sources in isolated direct current (DC) electrical networks, considering time-varying load and renewable generation curves. The mathematical formulation of this problem corresponds to mixed-integer nonlinear programming (MINLP), which is reformulated via mixed-integer convex optimization: This ensures the global optimum solving the resulting optimization model via branch & bound and interior-point methods. The main idea of including PV sources in the DC grid is to minimize the daily energy losses and greenhouse emissions produced by diesel generators in isolated areas. The GAMS package is employed to solve the MINLP model, using mixed and integer variables; also, the CVX and MOSEK solvers are used to obtain solutions from the proposed mixed-integer convex model in the MATLAB. Numerical results demonstrate important reductions in the daily energy losses and the harmful gas emissions when PV sources are optimally integrated into DC grid.spa
dc.description.abstractEste paper aborda la ubicación y el tamaño óptimos de las fuentes fotovoltaicas (PV) en redes eléctricas aisladas de corriente continua (CC), considerando la carga variable en el tiempo y las curvas de generación renovable. La formulación matemática de este problema corresponde a la programación no lineal de enteros mixtos (MINLP), que es reformulada mediante optimización convexa de enteros mixtos. Esto asegura el óptimo global resolviendo el modelo de optimización resultante a través de métodos de punto interior y ramificación. La idea principal de incluir fuentes fotovoltaicas en la red de CC es minimizar las pérdidas diarias de energía y las emisiones de efecto invernadero producidas por los generadores diésel en áreas aisladas. El paquete GAMS se emplea para resolver el modelo MINLP, utilizando variables mixtas y enteras. Además, los solucionadores CVX y MOSEK se utilizan para obtener soluciones del modelo convexo de enteros mixtos propuesto en MATLAB. Los resultados numéricos demuestran importantes reducciones en las pérdidas diarias de energía y las emisiones de gases nocivos cuando las fuentes fotovoltaicas se integran de manera óptima en la red de CC.spa
dc.format.extent7 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceDYNA - vol. 88 N° 217 (2021)spa
dc.titleExact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sourcesspa
dc.title.alternativeMinimización exacta de las pérdidas de energía y las emisiones de CO2 en redes de distribución DC aisladas empleando fuentes fotovoltaicasspa
dcterms.bibliographicCitationArunkumar, G., Elangovan, D., Sanjeevikumar, P., Nielsen, J.B.H., Leonowicz, Z. and Joseph, P.K., DC grid for domestic electrification. Energies, 12(11), pp. 1-17, 2019. DOI: 10.3390/en12112157spa
dcterms.bibliographicCitationGirbau-Llistuella, F., Díaz-González, F., Sumper, A., Gallart-Fernández, R. and Heredero-Peris, D., Smart grid architecture for rural distribution networks: application to a Spanish Pilot Network. Energies, 11(4), pp. 1-35, 2018. DOI: 10.3390/en11040844spa
dcterms.bibliographicCitationLavorato, M., Franco, J.F., Rider, M.J. and Romero, R., Imposing radiality constraints in distribution system optimization problems. IEEE Transactions on Power Systems, 27(1), pp. 172-180, 2012. DOI: 10.1109/TPWRS.2011.2161349spa
dcterms.bibliographicCitationLotfi, H. and Khodaei, A., AC versus DC microgrid planning. IEEE Transactions on Smart Grid, 8(1), pp. 296-304, 2017. DOI: 10.1109/TSG.2015.2457910spa
dcterms.bibliographicCitationJusto, J.J., Mwasilu, F., Lee, J. and Jung, J.W., AC-microgrids versus DC-microgrids with distributed energy resources: a review. Renewable and Sustainable Energy Reviews, 24(8), pp. 387-405, 2013. DOI: 10.1016/j.rser.2013.03.067spa
dcterms.bibliographicCitationSarker, M.J., Asare-Bediako, B., Slootweg, J.G., Kling, W.L. and Alipuria, B., DC micro-grid with distributed generation for rural electrification, in: 2012 47th International Universities Power Engineering Conference (UPEC), 2012, pp. 1-6. DOI: 10.1109/UPEC.2012.6398580spa
dcterms.bibliographicCitationGarces, A., Uniqueness of the power flow solutions in low voltage direct current grids. Electric Power Systems Research, 151(10), pp. 149-153, 2017. DOI: 10.1016/j.epsr.2017.05.031spa
dcterms.bibliographicCitationGarces, A., On the convergence of Newton Method in power flow studies for DC microgrids. IEEE Transactions on Power Systems, 33(9), pp. 5770-5777, 2018. DOI: 10.1109/TPWRS.2018.2820430spa
dcterms.bibliographicCitationLi, J., Liu, F., Wang, Z., Low, S.H. and Mei, S., Optimal power flow in Stand-Alone DC microgrid., IEEE Transactions on Power Systems, 33(9), pp. 5496-5506, 9 2018. DOI: 10.1109/TPWRS.2018.2801280spa
dcterms.bibliographicCitationGholizadeh-Roshanagh, R., Najafi-Ravadanegh, S. and Hosseinian, S.H., On optimal cost planning of low voltage direct current power distribution Networks. Electric Power Components and Systems, 46(9), pp. 1019-1028, 2018. DOI: 10.1080/15325008.2018.1445143spa
dcterms.bibliographicCitationGrisales-Noreña, L.F., Montoya, O.D., Ramos-Paja, C.A., Hernandez-Escobedo, Q. and Perea-Moreno, A.J., Optimal location and sizing of distributed generators in DC Networks using a hybrid method based on parallel PBIL and PSO. Electronics, 9(11), pp. 1-27, 2020. DOI: 10.3390/electronics9111808spa
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Grisales-Noreña, L.F., Cruz-Peragón, F. and Alcalá, G., Economic dispatch of renewable generators and BESS in DC microgrids using second-order cone optimization. Energies, 13(7), pp. 1-15, 2020. DOI: 10.3390/en13071703spa
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Holguín, E., Garces, A. and Grisales-Noreña, L.F., Economic dispatch of energy storage systems in DC microgrids employing a semidefinite programming model. Journal of Energy Storage, 21(2), pp. 1-8, 2019. DOI: 10.1016/j.est.2018.10.025spa
dcterms.bibliographicCitationGrisales-Noreña, L.F., Montoya, O.D. and Ramos-Paja, C.A., An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. Journal of Energy Storage, 29(6), pp. 101488, 2020. DOI: 10.1016/j.est.2020.101488spa
dcterms.bibliographicCitationAltun, T., Madani, R., Yadav, A.P., Nasir, A. and Davoudi, A., Optimal reconfiguration of DC Networks. IEEE Transactions on Power Systems, 35(11), pp. 4272-4284, 2020. DOI: 10.1109/TPWRS.2020.2994962spa
dcterms.bibliographicCitationGrisales-Noreña, L.F., Garzon-Rivera, O.D., Montoya, O.D. and Ramos-Paja, C.A., Metaheuristic optimization methods for optimal location and sizing DGs in DC Networks, in communications in computer and information science, Springer International Publishing, pp. 214-225, 2019. DOI: 10.1007/978-3-030-31019-6_19spa
dcterms.bibliographicCitationMolina-Martin, F., Montoya, O.D., Grisales-Noreña, L.F. and Hernández, J.C., A Mixed-Integer conic formulation for optimal placement and dimensioning of DGs in DC distribution Networks. Electronics, 10(2), pp. 1-15, 2021. DOI: 10.3390/electronics10020176spa
dcterms.bibliographicCitationGil-González, W., Molina-Cabrera, A., Montoya, O.D. and Grisales-Noreña, L.F., An MI-SDP model for optimal location and sizing of distributed generators in DC grids that guarantees the global optimum. Applied Sciences, 10(21), pp. 1-19, 2020. DOI: 10.3390/app10217681spa
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W. and Rivas-Trujillo, E., Optimal location-reallocation of battery energy storage systems in DC microgrids. Energies, 13(9), pp. 1-20, 2020. DOI: 10.3390/en13092289spa
dcterms.bibliographicCitationSimpson-Porco, J.W., Dörfler, F. and Bullo, F., On resistive Networks of constant-power devices. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(8), pp. 811-815, 2015. DOI: 10.1109/TCSII.2015.2433537spa
dcterms.bibliographicCitationMontoya, O.D., Garrido, V.M., Gil-González, W. and Grisales-Noreña, L.F., Power flow analysis in DC grids: two alternative numerical methods. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(11), pp. 1865-1869, 2019. DOI: 10.1109/TCSII.2019.2891640spa
dcterms.bibliographicCitationMontoya, O.D., Gil-Gonzalez, W. and Garces, A., Power flow approximation for DC networks with constant power loads via logarithmic transform of voltage magnitudes. Electric Power Systems Research, 175(10), pp. 105887, 2019. DOI: 10.1016/j.epsr.2019.105887spa
dcterms.bibliographicCitationGarcés, A. and Montoya, O.D., A potential function for the power flow in DC microgrids: an analysis of the uniqueness and existence of the solution and convergence of the algorithms. Journal of Control, Automation and Electrical Systems, 30(6), pp. 794-801, 2019. DOI: 10.1007/s40313-019-00489-4spa
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W. and Orozco-Henao, C., On the convergence of the power flow methods for DC networks with mesh and radial structures. Electric Power Systems Research, 191(2), pp. 106881, 2021. DOI: 10.1016/j.epsr.2020.106881spa
dcterms.bibliographicCitationVelasquez, O.S., Montoya-Giraldo, O.D., Garrido Arevalo, V.M. and Grisales Noreña, L.F., Optimal power flow in Direct-Current power grids via black hole optimization. Advances in Electrical and Electronic Engineering, 17(1), pp. 24-32, 2019. DOI: 10.15598/aeee.v17i1.3069spa
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W. and Grisales-Noreña, L.F., Vortex search algorithm for optimal power flow analysis in DC resistive Networks with CPLs. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(8), pp. 1439-1443, 2020. DOI: 10.1109/TCSII.2019.2938530spa
dcterms.bibliographicCitationGarzon-Rivera, O.D., Ocampo, J.A., Grisales-Noreña, L.F., Montoya, O.D. and Rojas-Montano, J.J., Optimal power flow in Direct Current Networks using the antlion optimizer. Statistics. Optimization & Information Computing, 8(10), pp. 846-857, 2020. DOI: 10.19139/soic-2310-5070-1022spa
dcterms.bibliographicCitationArteaga, J.A., Montoya, O.D. and Grisales-Noreña, L.F., Solution of the optimal power flow problem in direct current grids applying the hurricane optimization algorithm. Journal of Physics: Conference Series, 1448(1), art. 012015, 2020. DOI: 10.1088/1742-6596/1448/1/012015spa
dcterms.bibliographicCitationKhanna, R., Various control methods for DC-DC buck converter, in 2012 IEEE Fifth Power India Conference, 2012, pp. 1-4. DOI: 10.1109/PowerI.2012.6479548spa
dcterms.bibliographicCitationLiu, Z., Su, M., Sun, Y., Han, H., Hou, X. and Guerrero, J.M., Stability analysis of DC microgrids with constant power load under distributed control methods. Automatica, 90(4), pp. 62-72, 2018. DOI: 10.1016/j.automatica.2017.12.051spa
dcterms.bibliographicCitationRamírez-Gómez, C.A., Saavedra-Montes, A.J. and Ramos-Paja, C.A., Diseño de un Convertidor CD-CD y su control para un sistema de generación eólico conectado a una carga aislada. TecnoLógicas, pp. 95, 2013. DOI: 10.22430/22565337.336spa
dcterms.bibliographicCitationSerna-Garcés, S.I., Gonzalez-Montoya, D. and Ramos-Paja, C.A., Sliding-mode control of a Charger/Discharger DC/DC converter for DC-Bus regulation in renewable power systems, Energies, 9(4), pp. 1-27, 2016. DOI: 10.3390/en9040245spa
dcterms.bibliographicCitationShen, Y., Qin, Z. and Wang, H., Modeling and control of DC-DC converters, in: Control of Power Electronic Converters and Systems, Elsevier, 2018, pp. 69-92. DOI: 10.1016/B978-0-12-805245-7.00003-2spa
dcterms.bibliographicCitationBenson, H.Y. and Sağlam, Ü., Mixed-integer second-order cone programming: a survey, in: Theory Driven by Influential Applications, INFORMS, 2013, pp. 13-36. DOI: 10.1287/educ.2013.0115spa
dcterms.bibliographicCitationMontoya, O.D., Grisales-Noreña, L F., Gil-González, W., Alcalá, G. and Hernandez-Escobedo, Q., Optimal location and sizing of PV sources in DC Networks for minimizing greenhouse emissions in diesel generators. Symmetry, 12(2), pp. 1-14, 2020. DOI: 10.3390/sym12020322spa
dcterms.bibliographicCitationFarivar, M. and Low, S.H., Branch flow model: relaxations and convexification-Part I. IEEE Transactions on Power Systems, 28(3), pp. 2554-2564, 2013. DOI: 10.1109/TPWRS.2013.2255317spa
dcterms.bibliographicCitationKayacik, S.E. and Kocuk, B., An MISOCP-based solution approach to the reactive optimal power flow problem. IEEE Transactions on Power Systems, 36(1), pp. 529-532, 2021spa
dcterms.bibliographicCitationFarivar, M. and Low, S.H., Branch flow model: relaxations and convexification-Part II. IEEE Transactions on Power Systems, 28(3), pp. 2565-2572, 2013. DOI: 10.1109/TPWRS.2020.3036235spa
dcterms.bibliographicCitationMontoya, O.D., Serra, F.M and De Angelo, C. H., On the efficiency in electrical Networks with AC and DC operation technologies: a comparative study at the distribution stage, Electronics, 9(9), pp. 1-23, 2020. DOI: 10.3390/electronics9091352spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.15446/dyna.v88n217.93099
dc.subject.keywordsMinimization of greenhouse gas emissionsspa
dc.subject.keywordsRenewable energy resourcesspa
dc.subject.keywordsDaily demand curvesspa
dc.subject.keywordsConvex optimizationspa
dc.subject.keywordsDiesel generatorsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.