Mostrar el registro sencillo del ítem

dc.contributor.authorBenjumea, Eberto
dc.contributor.authorSierra, Juan S.
dc.contributor.authorMeza, Jhacson
dc.contributor.authorMarrugo Hernández, Andrés Guillermo
dc.date.accessioned2022-01-28T20:03:03Z
dc.date.available2022-01-28T20:03:03Z
dc.date.issued2021-06-16
dc.date.submitted2022-01-27
dc.identifier.citationE. Roman-Rangel et al. (Eds.): MCPR 2021, LNCS 12725, pp. 345–354, 2021. Springer Nature Switzerland AG 2021 https://doi.org/10.1007/978-3-030-77004-4_33spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10421
dc.description.abstractThe pose estimation of a surgical instrument is a common problem in the new needs of medical science. Many instrument tracking methods use markers with a known geometry that allows for solving the instrument pose as detected by a camera. However, marker occlusion happens, and it hinders correct pose estimation. In this work, we propose an adaptable multi-target attachment with ArUco markers to solve occlusion problems on tracking a medical instrument like an ultrasound probe or a scalpel. Our multi-target system allows for precise and redundant real-time pose estimation implemented in OpenCV. Encouraging results show that the multi-target device may prove useful in the clinical settingspa
dc.format.extent10 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourcePattern Recognition - vol. 12725spa
dc.titleMulti-target Attachment for Surgical Instrument Trackingspa
dcterms.bibliographicCitationAvola, D., Cinque, L., Foresti, G.L., Mercuri, C., Pannone, D.: A practical framework for the development of augmented reality applications by using aruco markers. In: International Conference on Pattern Recognition Applications and Methods, vol. 2, pp. 645–654. SCITEPRESS (2016)spa
dcterms.bibliographicCitationAzuma, R.T.: A survey of augmented reality. Presence: TeleoperatorsVirtual Environ. 6(4), 355–385 (1997)spa
dcterms.bibliographicCitationBootsma, G.J., Siewerdsen, J.H., Daly, M.J., Jaffray, D.A.: Initial investigation of an automatic registration algorithm for surgical navigation. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3638–3642 (2008). https://doi.org/10.1109/IEMBS.2008.4649996spa
dcterms.bibliographicCitationColley, E., Carroll, J., Thomas, S., Varcoe, R.L., Simmons, A., Barber, T.: A methodology for non-invasive 3-D surveillance of arteriovenous fistulae using freehand ultrasound. IEEE Trans. Biomed. Eng. 65(8), 1885–1891 (2017)spa
dcterms.bibliographicCitationDeSouza, G.N., Kak, A.C.: Vision for mobile robot navigation: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 237–267 (2002)spa
dcterms.bibliographicCitationGarrido-Jurado, S., Mu˜noz Salinas, R., Madrid-Cuevas, F., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using mixed integer linear programming. Pattern Recogn. 51(C), 481–491 2016). https://doi.org/10.1016/j.patcog.2015.09. 023spa
dcterms.bibliographicCitationGarrido-Jurado, S., Mu˜noz-Salinas, R., Madrid-Cuevas, F.J., Mar´ın-Jim´enez, M.J.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47(6), 2280–2292 (2014)spa
dcterms.bibliographicCitationHu, D., DeTone, D., Malisiewicz, T.: Deep charuco: dark charuco marker pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019spa
dcterms.bibliographicCitationKato, H., Billinghurst, M.: Marker tracking and HMD calibration for a videobased augmented reality conferencing system. In: Proceedings 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR 1999), pp. 85–94. IEEE (1999)spa
dcterms.bibliographicCitationKnyaz, V.A.: The development of new coded targets for automated point identification and non-contact 3D surface measurements. IAPRS 5, 80–85 (1998)spa
dcterms.bibliographicCitationKoeda, M., Yano, D., Shintaku, N., Onishi, K., Noborio, H.: Development of wireless surgical knife attachment with proximity indicators using aruco marker. In: Kurosu, M. (ed.) HCI 2018. LNCS, vol. 10902, pp. 14–26. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91244-8 2spa
dcterms.bibliographicCitation. Mercier, L., Langø, T., Lindseth, F., Collins, D.L.: A review of calibration techniques for freehand 3-D ultrasound systems. Ultrasound Med. Biol. 31(4), 449–471 (2005)spa
dcterms.bibliographicCitation. Meza, J., Simarra, P., Contreras-Ojeda, S., Romero, L.A., Contreras Ortiz, S.H., Ar´ambula Cos´ıo, F., Marrugo, A.G.: A low-cost multi-modal medical imaging system with fringe projection profilometry and 3D freehand ultrasound. Proc. SPIE 11330, 1133004 (2020)spa
dcterms.bibliographicCitationRomero, C., Naufal, C., Meza, J., Marrugo, A.G.: A validation strategy for a targetbased vision tracking system with an industrial robot. J. Phys.: Conf. Ser. 1547, 012018 (2020). https://doi.org/10.1088/1742-6596/1547/1/012018spa
dcterms.bibliographicCitationRomero-Ramirez, F., Mu˜noz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image Vision Comput. 76 (2018). https://doi.org/ 10.1016/j.imavis.2018.05.004spa
dcterms.bibliographicCitationRomero-Ramirez, F.J., Mu˜noz-Salinas, R., Medina-Carnicer, R.: Fractal markers: a new approach for long-range marker pose estimation under occlusion. IEEE Access 7, 169908–169919 (2019)spa
dcterms.bibliographicCitationSani, M.F., Karimian, G.: Automatic navigation and landing of an indoor AR. Drone quadrotor using arUco marker and inertial sensors. In: 2017 International Conference on Computer and Drone Applications (IConDA), pp. 102–107. IEEE (2017)spa
dcterms.bibliographicCitation. Treece, G.M., Gee, A.H., Prager, R.W., Cash, C.J., Berman, L.H.: High-definition freehand 3-D ultrasound. Ultrasound Med. Biol. 29(4), 529–546 (2003)spa
dcterms.bibliographicCitationWang, J., Olson, E.: Apriltag 2: efficient and robust fiducial detection. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4193–4198. IEEE (2016)spa
dcterms.bibliographicCitationYano, D., Koeda, M., Onishi, K., Noborio, H.: Development of a surgical knife attachment with proximity indicators. In: Marcus, A., Wang, W. (eds.) DUXU 2017. LNCS, vol. 10289, pp. 608–618. Springer, Cham (2017). https://doi.org/10. 1007/978-3-319-58637-3 48spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.1007/978-3-030-77004-4_33
dc.subject.keywordsMulti-target ArUco markerspa
dc.subject.keywordsMPose estimationspa
dc.subject.keywordsOptical instrument trackingspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.